期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Comparison of estimators of variance for forest inventories with systematic sampling-results from artificial populations 被引量:2
1
作者 Steen Magnussen Ronald EMcRoberts +4 位作者 Johannes Breidenbach Thomas Nord-Larsen Göran Ståhl Lutz Fehrmann Sebastian Schnell 《Forest Ecosystems》 SCIE CSCD 2020年第2期215-233,共19页
Background:Large area forest inventories often use regular grids(with a single random start)of sample locations to ensure a uniform sampling intensity across the space of the surveyed populations.A design-unbiased est... Background:Large area forest inventories often use regular grids(with a single random start)of sample locations to ensure a uniform sampling intensity across the space of the surveyed populations.A design-unbiased estimator of variance does not exist for this design.Oftentimes,a quasi-default estimator applicable to simple random sampling(SRS)is used,even if it carries with it the likely risk of overestimating the variance by a practically important margin.To better exploit the precision of systematic sampling we assess the performance of five estimators of variance,including the quasi default.In this study,simulated systematic sampling was applied to artificial populations with contrasting covariance structures and with or without linear trends.We compared the results obtained with the SRS,Matern’s,successive difference replication,Ripley’s,and D’Orazio’s variance estimators.Results:The variances obtained with the four alternatives to the SRS estimator of variance were strongly correlated,and in all study settings consistently closer to the target design variance than the estimator for SRS.The latter always produced the greatest overestimation.In populations with a near zero spatial autocorrelation,all estimators,performed equally,and delivered estimates close to the actual design variance.Conclusion:Without a linear trend,the SDR and DOR estimators were best with variance estimates more narrowly distributed around the benchmark;yet in terms of the least average absolute deviation,Matern’s estimator held a narrow lead.With a strong or moderate linear trend,Matern’s estimator is choice.In large populations,and a low sampling intensity,the performance of the investigated estimators becomes more similar. 展开更多
关键词 Spatial autocorrelation Linear trend Model based Design biased Matern variance Successive difference replication variance Geary contiguity coefficient Random site effects
下载PDF
Tuning of Prior Covariance in Generalized Least Squares 被引量:1
2
作者 William Menke 《Applied Mathematics》 2021年第3期157-170,共14页
Generalized Least Squares (least squares with prior information) requires the correct assignment of two prior covariance matrices: one associated with the uncertainty of measurements;the other with the uncertainty of ... Generalized Least Squares (least squares with prior information) requires the correct assignment of two prior covariance matrices: one associated with the uncertainty of measurements;the other with the uncertainty of prior information. These assignments often are very subjective, especially when correlations among data or among prior information are believed to occur. However, in cases in which the general form of these matrices can be anticipated up to a set of poorly-known parameters, the data and prior information may be used to better-determine (or “tune”) the parameters in a manner that is faithful to the underlying Bayesian foundation of GLS. We identify an objective function, the minimization of which leads to the best-estimate of the parameters and provide explicit and computationally-efficient formula for calculating the derivatives needed to implement the minimization with a gradient descent method. Furthermore, the problem is organized so that the minimization need be performed only over the space of covariance parameters, and not over the combined space of model and covariance parameters. We show that the use of trade-off curves to select the relative weight given to observations and prior information is not a form of tuning, because it does not, in general maximize the posterior probability of the model parameters, and can lead to a different weighting than the procedure described here. We also provide several examples that demonstrate the viability, and discuss both the advantages and limitations of the method. 展开更多
关键词 Bayesian Inference COvariance ERROR Generalized Least Squares Gradient Descent INTERPOLATION REGULARIZATION trade-off Curve variance
下载PDF
An approximate point-based alternative for the estimation of variance under big BAF sampling
3
作者 Thomas B.Lynch Jeffrey H.Gove +1 位作者 Timothy G.Gregoire Mark J.Ducey 《Forest Ecosystems》 SCIE CSCD 2021年第3期439-457,共19页
Background:A new variance estimator is derived and tested for big BAF(Basal Area Factor)sampling which is a forest inventory system that utilizes Bitterlich sampling(point sampling)with two BAF sizes,a small BAF for t... Background:A new variance estimator is derived and tested for big BAF(Basal Area Factor)sampling which is a forest inventory system that utilizes Bitterlich sampling(point sampling)with two BAF sizes,a small BAF for tree counts and a larger BAF on which tree measurements are made usually including DBHs and heights needed for volume estimation.Methods:The new estimator is derived using the Delta method from an existing formulation of the big BAF estimator as consisting of three sample means.The new formula is compared to existing big BAF estimators including a popular estimator based on Bruce’s formula.Results:Several computer simulation studies were conducted comparing the new variance estimator to all known variance estimators for big BAF currently in the forest inventory literature.In simulations the new estimator performed well and comparably to existing variance formulas.Conclusions:A possible advantage of the new estimator is that it does not require the assumption of negligible correlation between basal area counts on the small BAF factor and volume-basal area ratios based on the large BAF factor selection trees,an assumption required by all previous big BAF variance estimation formulas.Although this correlation was negligible on the simulation stands used in this study,it is conceivable that the correlation could be significant in some forest types,such as those in which the DBH-height relationship can be affected substantially by density perhaps through competition.We derived a formula that can be used to estimate the covariance between estimates of mean basal area and the ratio of estimates of mean volume and mean basal area.We also mathematically derived expressions for bias in the big BAF estimator that can be used to show the bias approaches zero in large samples on the order of 1n where n is the number of sample points. 展开更多
关键词 Bitterlich sampling Delta method Double sampling Estimator bias Forest inventory Horizontal point sampling variance of a product Volume basal area ratio Covariance estimation
下载PDF
Estimation of Population Variance Using the Coefficient of Kurtosis and Median of an Auxiliary Variable under Simple Random Sampling
4
作者 Tonui Kiplangat Milton Romanus Otieno Odhiambo George Otieno Orwa 《Open Journal of Statistics》 2017年第6期944-955,共12页
In this study we have proposed a modified ratio type estimator for population variance of the study variable y under simple random sampling without replacement making use of coefficient of kurtosis and median of an au... In this study we have proposed a modified ratio type estimator for population variance of the study variable y under simple random sampling without replacement making use of coefficient of kurtosis and median of an auxiliary variable x. The estimator’s properties have been derived up to first order of Taylor’s series expansion. The efficiency conditions derived theoretically under which the proposed estimator performs better than existing estimators. Empirical studies have been done using real populations to demonstrate the performance of the developed estimator in comparison with the existing estimators. The proposed estimator as illustrated by the empirical studies performs better than the existing estimators under some specified conditions i.e. it has the smallest Mean Squared Error and the highest Percentage Relative Efficiency. The developed estimator therefore is suitable to be applied to situations in which the variable of interest has a positive correlation with the auxiliary variable. 展开更多
关键词 Modified Ratio Type variance Estimator Study VARIABLE AUXILIARY VARIABLE KURTOSIS MEDIAN bias Mean Squared Error (MSE) PERCENTAGE Relative Efficiency (PRE) Simple Random Sampling
下载PDF
Quantifying the attribution of model bias in simulating summer hot days in China with IAP AGCM 4.1 被引量:4
5
作者 LIN Zhao-Hui YU Zheng +1 位作者 ZHANG He WU Cheng-Lai 《Atmospheric and Oceanic Science Letters》 CSCD 2016年第6期436-442,共7页
Using lAP AGCM simulation results for the period 1961-2005, summer hot days in China were calculated and then compared with observations. Generally, the spatial pattern of hot days is reasonably reproduced, with more ... Using lAP AGCM simulation results for the period 1961-2005, summer hot days in China were calculated and then compared with observations. Generally, the spatial pattern of hot days is reasonably reproduced, with more hot days found in northern China, the Yangtze and Huaihe River basin, the Chuan-Yu region, and southern Xinjiang. However, the model tends to overestimate the number of hot days in the above-mentioned regions, particularly in the Yangtze and Huaihe River basin where the simulated summer-mean hot days is 13 days more than observed when averaged over the whole region, and the maximum overestimation of hot days can reach 23 days in the region. Analysis of the probability distribution of daily maximum temperature (Trnax) suggests that the warm bias in the model-simulated Tmax contributes largely to the overestimation of hot days in the model. Furthermore, the discrepancy in the simulated variance of the Tmax distribution also plays a non- negligible role in the overestimation of hot days. Indeed, the latter can even account for 22% of the total bias of simulated hot days in August in the Yangtze and Huaihe River basin. The quantification of model bias from the mean value and variability can provide more information for further model improvement. 展开更多
关键词 Hot days variance inprobability distribution bias attribution modelevaluation IAP AGCM
下载PDF
偏向性技术进步对中国农业全要素生产率增长的影响研究
6
作者 杨万平 张琪 《商业经济与管理》 CSSCI 北大核心 2024年第7期52-66,共15页
基于Antonelli的技术一致性理论,设定资本、劳动和土地的三要素标准化CES生产函数,利用泰勒展开法和近似技术推导偏向性技术进步框架下ATFP(农业全要素生产率)增长模型,系统考察偏向性技术进步、偏向性要素配置与要素投入结构和要素效... 基于Antonelli的技术一致性理论,设定资本、劳动和土地的三要素标准化CES生产函数,利用泰勒展开法和近似技术推导偏向性技术进步框架下ATFP(农业全要素生产率)增长模型,系统考察偏向性技术进步、偏向性要素配置与要素投入结构和要素效率结构的协调一致性对中国ATFP增长的驱动机制;检验ATFP增长在时间和空间上的差异来源。研究发现:中国农业偏向性技术进步与要素投入结构和要素效率结构的协调一致性促进了ATFP增长率提升,且一致性程度逐渐加深,成为ATFP增长的主要源泉;土地效率增长率低下是ATFP增长损失及后期ATFP增长放缓的主要原因,若能破除土地效率扭曲,ATFP增长率将提高3.28%;要素效率增长效应差异是中国ATFP增长率地区差异的主要来源。 展开更多
关键词 偏向性技术进步 要素效率结构 技术一致性 多要素标准化CES生产函数 方差分解
下载PDF
Extremely thin but very robust:Surprising cryptogam trait combinations at the end of the leaf economics spectrum
7
作者 Tana Wuyun Lu Zhang +6 位作者 Tiina Tosens Bin Liu Kristiina Mark JoséÁngel Morales-Sanchez Jesamine Jöneva Rikisahedew Vivian Kuusk Ülo Niinemets 《Plant Diversity》 SCIE CAS CSCD 2024年第5期621-629,共9页
Leaf economics spectrum(LES)describes the fundamental trade-offs between leaf structural,chemical,and physiological investments.Generally,structurally robust thick leaves with high leaf dry mass per unit area(LMA)exhi... Leaf economics spectrum(LES)describes the fundamental trade-offs between leaf structural,chemical,and physiological investments.Generally,structurally robust thick leaves with high leaf dry mass per unit area(LMA)exhibit lower photosynthetic capacity per dry mass(Amass).Paradoxically,“soft and thinleaved”mosses and spikemosses have very low Amass,but due to minute-size foliage elements,their LMA and its components,leaf thickness(LT)and density(LD),have not been systematically estimated.Here,we characterized LES and associated traits in cryptogams in unprecedented details,covering five evolutionarily different lineages.We found that mosses and spikemosses had the lowest LMA and LT values ever measured for terrestrial plants.Across a broad range of species from different lineages,Amass and LD were negatively correlated.In contrast,Amass was only related to LMA when LMA was greater than 14 g cm^(-2).In fact,low Amass reflected high LD and cell wall thickness in the studied cryptogams.We conclude that evolutionarily old plant lineages attained poorly differentiated,ultrathin mesophyll by increasing LD.Across plant lineages,LD,not LMA,is the trait that represents the trade-off between leaf robustness and physiology in the LES. 展开更多
关键词 Investment strategy Leaf density Leaf structural traits LMA estimation bias Non-seed plants Trait trade-offs
下载PDF
测评中的共同方法偏差 被引量:27
8
作者 杜建政 赵国祥 刘金平 《心理科学》 CSSCI CSCD 北大核心 2005年第2期420-422,共3页
共同方法变异是指由于测量方法而非所测构想造成的变异。共同方法变异会对测评和测评间的相关产生严重影响,甚至会使研究导致错误结论。本文介绍了学界对共同方法偏差的研究,内容包括:(1 )共同方法偏差在多大程度上和以何种方式影响测... 共同方法变异是指由于测量方法而非所测构想造成的变异。共同方法变异会对测评和测评间的相关产生严重影响,甚至会使研究导致错误结论。本文介绍了学界对共同方法偏差的研究,内容包括:(1 )共同方法偏差在多大程度上和以何种方式影响测评研究结果;(2 )共同方法偏差的潜在来源及其程序控制。 展开更多
关键词 偏差 测评 测量方法 研究结果 程序控制 变异
下载PDF
顾及截断偏差影响的TSVD截断参数确定方法 被引量:12
9
作者 林东方 朱建军 宋迎春 《测绘学报》 EI CSCD 北大核心 2017年第6期679-688,共10页
TSVD通过截断参数截掉较小的奇异值来改善病态性对估计的影响,其本质是通过引入少量偏差来降低方差,以提高估值的稳定性和可靠性。截断参数是影响TSVD解算效果的关键因素,常用的广义交叉核实法(GCV法)和L曲线法未从TSVD改善模型参数估... TSVD通过截断参数截掉较小的奇异值来改善病态性对估计的影响,其本质是通过引入少量偏差来降低方差,以提高估值的稳定性和可靠性。截断参数是影响TSVD解算效果的关键因素,常用的广义交叉核实法(GCV法)和L曲线法未从TSVD改善模型参数估值质量的角度确定截断参数,稳定性和可靠性不足,而最小MSE法理论依据充分但受限于MSE计算的准确性。通过分析TSVD由小到大截掉奇异值后,相应的估值方差与偏差变化,本文提出了引入偏差量小于降低方差量来确定截断参数的思想,并通过估计出较大奇异值截掉后的偏差引入量建立偏差估值可信区间,利用可信区间内偏差估值与方差下降量进行比较,避免较小奇异值截掉后的方差下降量与偏差引入量的直接比较,从而解决参数真值未知截掉较小奇异值引入偏差量难以准确计算的问题。最后通过试验验证了新方法的可行性和有效性,相比于GCV法和L曲线法,新方法确定的截断参数稳定性和可靠性更高,可有效提高TSVD的解算效果。 展开更多
关键词 TSVD 截断参数 有偏估计 方差 偏差
下载PDF
TLS估计性质的进一步讨论 被引量:2
10
作者 赵俊 焦玉兰 归庆明 《测绘科学技术学报》 CSCD 北大核心 2015年第4期340-343,共4页
通过对整体最小二乘估计进行分析,给出了未知参数估计及残差的统计性质。理论上得出它们均是有偏的,并且它们之间存在一定的线性关系。受系数矩阵误差影响,导致与传统最小二乘的相关结论有所区别。通过与最小二乘估计进行比较,证明了整... 通过对整体最小二乘估计进行分析,给出了未知参数估计及残差的统计性质。理论上得出它们均是有偏的,并且它们之间存在一定的线性关系。受系数矩阵误差影响,导致与传统最小二乘的相关结论有所区别。通过与最小二乘估计进行比较,证明了整体最小二乘估计为膨胀型有偏估计;同时得到了整体最小二乘估计的方差和均方误差的计算公式,严格论证了其值均大于最小二乘估计的方差和均方误差,因此当设计矩阵病态时整体最小二乘估计更易受病态性的影响。最后,对整体最小二乘估计与最小二乘估计之间的不同距离进行了比较,给出了选择的判定定理。 展开更多
关键词 整体最小二乘估计 最小二乘估计 有偏估计 方差 均方误差
下载PDF
中国八大区域经济绿色发展转型:动力差异与结构分解 被引量:8
11
作者 杨万平 李冬 《统计与信息论坛》 CSSCI 北大核心 2022年第8期90-105,共16页
随着生态文明建设的深入推进,加快经济绿色发展转型已成为实现中国高质量发展的内在需求和鲜明特色。在生态文明约束下基于强可持续理念中环境福利非减性的发展诉求,构建MEBM-Luenberger经济绿色发展转型的研究框架,引入偏向性技术进步... 随着生态文明建设的深入推进,加快经济绿色发展转型已成为实现中国高质量发展的内在需求和鲜明特色。在生态文明约束下基于强可持续理念中环境福利非减性的发展诉求,构建MEBM-Luenberger经济绿色发展转型的研究框架,引入偏向性技术进步视角,从总体增长、要素投入和生态全要素生产率(ETFP)增长等三个维度对中国八大区域经济绿色发展转型的动力差异进行识别,进而运用方差分解揭示其动力差异的结构来源,助推中国八大区域经济绿色发展转型。研究发现:2001—2018年中国经济年均增长11.26%,要素投入是其主要动因,呈现以“环境建设—物质资本—清洁能源—非清洁能源—人力资本”贡献度依次递减,但以中性技术进步驱动的ETFP增长的贡献率在不断提高。八大区域经济增速呈现东南沿海向西北内陆梯度递减趋势,物质资本、人力资本和非清洁能源等要素投入是其主要动力,而ETFP增长的贡献率持续提高,且在黄河中游和西南地区较大,在西北和南部沿海地区较小。中国经济绿色发展转型动力差异的结构分解中,以环境建设为主的要素投入差异和以效率变动为主的ETFP增长差异是主要成因。沿海地区以环境建设要素投入差异为主,而内陆地区对ETFP增长差异相对敏感。同时,偏向性技术进步差异存在扩大趋势是导致ETFP增长动力差异的重要因素。 展开更多
关键词 强可持续 经济绿色发展转型 偏向性技术进步 环境建设 方差分解
下载PDF
关于有偏估计提高测量可靠性的探讨
12
作者 岳元龙 左信 罗雄麟 《化工学报》 EI CAS CSCD 北大核心 2013年第9期3270-3276,共7页
可靠性是评价化工过程测量数据优劣的重要指标。理论与实践中普遍采用的观测数据平均值或加权平均作为待测参数测量值方法的本质是最小二乘无偏估计,而无偏测量数据可靠性与方差一一对应,根据高斯-马尔科夫定理可知无偏测量方差有下界,... 可靠性是评价化工过程测量数据优劣的重要指标。理论与实践中普遍采用的观测数据平均值或加权平均作为待测参数测量值方法的本质是最小二乘无偏估计,而无偏测量数据可靠性与方差一一对应,根据高斯-马尔科夫定理可知无偏测量方差有下界,所以无偏测量数据不一定具有高可靠性。提出采用有偏估计改善测量数据的可靠性,首先分析未知参数测量与参数估计过程之间的等价性;其次给出同时采用方差和偏差定量表示有偏测量数据可靠性的方法;最后研究偏参数对有偏测量数据可靠性的影响,并采用数值法求解了偏参数的最优值。仿真结果表明偏参数合理取值范围内有偏测量的可靠性总是优于无偏测量的可靠性。 展开更多
关键词 可靠性 测量 有偏估计 岭估计 偏差 方差
下载PDF
具有两个方差分量的线性模型的无偏估计和有偏估计
13
作者 黄养新 《上海建材学院学报》 CSCD 1993年第1期57-61,共5页
本文讨论了线性模型中方差分量的线性函数的估计。利用'离差—均值对应'方法,给出了其最小二乘估计、岭估计及Stein估计。在均方误差意义下,证明了岭估计及Stein估计优于最小二乘估计(LS估计)。
关键词 方差分量 无偏估计 线性模型
下载PDF
线性模型有偏估计的构造
14
作者 田金文 《江汉石油学院学报》 CSCD 北大核心 1992年第1期96-101,共6页
对线性模型有偏估计的构造问题进行了探讨,得到了一组线性有偏估计公式,它不仅包含了已有的多种有偏估计,还得到了一些新的有偏估计,为有偏估计的实际应用提供了多种选择。此外,还对一种新的约束压缩估计的性质进行了讨论,并从整体上论... 对线性模型有偏估计的构造问题进行了探讨,得到了一组线性有偏估计公式,它不仅包含了已有的多种有偏估计,还得到了一些新的有偏估计,为有偏估计的实际应用提供了多种选择。此外,还对一种新的约束压缩估计的性质进行了讨论,并从整体上论述了这批有偏估计的容许性。 展开更多
关键词 线性模型 线性估计 最小方差估计
下载PDF
误差方差的有偏估计与均方误差的无偏估计
15
作者 黄养新 《武汉工学院学报》 1992年第3期39-43,共5页
本文给出了线性模型中误差方差的最小二乘(LS)估计、岭估计及Stein估计,并研究了其优良性。同时还进一步讨论了对LS估计的任一线性变换,得到了其均方误差的一个无偏估计,并应用极小化均方误差的无偏估计。给出了确定岭参数和压缩系数的... 本文给出了线性模型中误差方差的最小二乘(LS)估计、岭估计及Stein估计,并研究了其优良性。同时还进一步讨论了对LS估计的任一线性变换,得到了其均方误差的一个无偏估计,并应用极小化均方误差的无偏估计。给出了确定岭参数和压缩系数的方法。 展开更多
关键词 误差方差 均方误差 线性模型 估计
下载PDF
全局减方差方法的HBR-2基准题应用 被引量:3
16
作者 郑征 梅其良 邓力 《原子能科学技术》 EI CAS CSCD 北大核心 2018年第6期987-993,共7页
对于深穿透类型的屏蔽问题,在合理的时间内计算得到可信的结果对于蒙特卡罗(MC)方法是一个巨大的挑战。基于离散纵标(S_N)方法的局部和全局减方差方法能有效降低MC计算深穿透问题的计数误差。本文基于HBR-2基准题比较了全局减方差方法... 对于深穿透类型的屏蔽问题,在合理的时间内计算得到可信的结果对于蒙特卡罗(MC)方法是一个巨大的挑战。基于离散纵标(S_N)方法的局部和全局减方差方法能有效降低MC计算深穿透问题的计数误差。本文基于HBR-2基准题比较了全局减方差方法和局部减方差方法的计算效率。结果表明,对于HBR-2基准题,局部和全局减方差方法均取得了较好的结果。全局减方差方法1次计算即可同时优化辐照监督管和堆外探测器的计数,因此实际应用更加方便和高效。 展开更多
关键词 全局减方差方法 离散纵标方法 蒙特卡罗方法 源偏倚 权窗
下载PDF
CAP1400安全壳内辐射场计算 被引量:1
17
作者 郑征 周岩 李瑞 《核科学与工程》 CAS CSCD 北大核心 2019年第2期298-302,共5页
采用蒙特卡罗(MC)方法直接计算深穿透屏蔽问题并在合理的时间内得到可信的结果是非常困难的。基于离散纵标(SN)的减方差方法采用源偏倚和权窗技巧能够有效降低MC方法计算深穿透问题的计数误差。为了一次计算同时优化不同位置的计数,本... 采用蒙特卡罗(MC)方法直接计算深穿透屏蔽问题并在合理的时间内得到可信的结果是非常困难的。基于离散纵标(SN)的减方差方法采用源偏倚和权窗技巧能够有效降低MC方法计算深穿透问题的计数误差。为了一次计算同时优化不同位置的计数,本文研究了基于SN的全局减方差方法,在CAP1400安全壳内辐射场分布计算中进行了应用。数值结果表明,该方法取得了良好的全局减方差效果,可用于复杂几何深穿透问题。 展开更多
关键词 全局减方差方法 离散纵标方法 蒙特卡罗方法 源偏倚 权窗
下载PDF
投资者预期偏误对投资收益的影响——以风险中性投资者为例
18
作者 熊峰 马丹 《上海管理科学》 CSSCI 2013年第1期95-98,共4页
由于市场信息的不完全及投资者认知上的不足,投资者对风险资产的预期收益与实际收益总会存在不同程度的偏离。投资者对风险资产收益的预期偏误往往会影响其在金融市场上的投资决策,并最终影响到投资者实际的投资组合收益。那么,投资者... 由于市场信息的不完全及投资者认知上的不足,投资者对风险资产的预期收益与实际收益总会存在不同程度的偏离。投资者对风险资产收益的预期偏误往往会影响其在金融市场上的投资决策,并最终影响到投资者实际的投资组合收益。那么,投资者的预期偏误会对投资者实际的投资组合收益产生怎样的影响?本文以风险中性投资者为例,给出投资者预期偏误大小的度量方法,建立出投资者预期偏误与投资收益的回归模型,用模拟论证的方法对二者的关系进行分析。 展开更多
关键词 均值-方差模型 风险中性 预期偏误 投资收益
下载PDF
Controlling underestimation bias in reinforcement learning via minmax operation 被引量:1
19
作者 Fanghui HUANG Yixin HE +2 位作者 Yu ZHANG Xinyang DENG Wen JIANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第7期406-417,共12页
Obtaining the accurate value estimation and reducing the estimation bias are the key issues in reinforcement learning.However,current methods that address the overestimation problem tend to introduce underestimation,w... Obtaining the accurate value estimation and reducing the estimation bias are the key issues in reinforcement learning.However,current methods that address the overestimation problem tend to introduce underestimation,which face a challenge of precise decision-making in many fields.To address this issue,we conduct a theoretical analysis of the underestimation bias and propose the minmax operation,which allow for flexible control of the estimation bias.Specifically,we select the maximum value of each action from multiple parallel state-action networks to create a new state-action value sequence.Then,a minimum value is selected to obtain more accurate value estimations.Moreover,based on the minmax operation,we propose two novel algorithms by combining Deep Q-Network(DQN)and Double DQN(DDQN),named minmax-DQN and minmax-DDQN.Meanwhile,we conduct theoretical analyses of the estimation bias and variance caused by our proposed minmax operation,which show that this operation significantly improves both underestimation and overestimation biases and leads to the unbiased estimation.Furthermore,the variance is also reduced,which is helpful to improve the network training stability.Finally,we conduct numerous comparative experiments in various environments,which empirically demonstrate the superiority of our method. 展开更多
关键词 Reinforcement learning Minmax operation Estimation bias Underestimation bias variance
原文传递
Confidence Level Based on Ridge Estimator in Process Measurement and Its Application
20
作者 岳元龙 左信 罗雄麟 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第10期1144-1154,共11页
Ordinary least squares(OLS) algorithm is widely applied in process measurement, because the sensor model used to estimate unknown parameters can be approximated through multivariate linear model. However, with few or ... Ordinary least squares(OLS) algorithm is widely applied in process measurement, because the sensor model used to estimate unknown parameters can be approximated through multivariate linear model. However, with few or noisy data or multi-collinearity, unbiased OLS leads to large variance. Biased estimators, especially ridge estimator, have been introduced to improve OLS by trading bias for variance. Ridge estimator is feasible as an estimator with smaller variance. At the same confidence level, with additive noise as the normal random variable, the less variance one estimator has, the shorter the two-sided symmetric confidence interval is. However, this finding is limited to the unbiased estimator and few studies analyze and compare the confidence levels between ridge estimator and OLS. This paper derives the matrix of ridge parameters under necessary and sufficient conditions based on which ridge estimator is superior to OLS in terms of mean squares error matrix, rather than mean squares error.Then the confidence levels between ridge estimator and OLS are compared under the condition of OLS fixed symmetric confidence interval, rather than the criteria for evaluating the validity of different unbiased estimators. We conclude that the confidence level of ridge estimator can not be directly compared with that of OLS based on the criteria available for unbiased estimators, which is verified by a simulation and a laboratory scale experiment on a single parameter measurement. 展开更多
关键词 process measurement confidence level ridge estimator variance bias
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部