期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Extended Fan's Algebraic Method and Its Application to KdV and Variant Boussinesq Equations 被引量:7
1
作者 YANG Xian-Lin TANG Jia-Shi College of Mechanics and Aerospace,Hunan University,Changsha 410082,China2 Department of Computer Science,Hunan Radio and Television University,Changsha 410004,China 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第7期1-6,共6页
An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential e... An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential equationwhich is regarded as an extended elliptic equation and whose degree Υ is expanded to the case of r>4.The efficiency ofthe method is demonstrated by the KdV equation and the variant Boussinesq equations.The results indicate that themethod not only offers all solutions obtained by using Fu's and Fan's methods,but also some new solutions. 展开更多
关键词 algebraic method KdV equation variant boussinesq equations polynomial complete discrimination system
下载PDF
Applications of F-expansion to Periodic Wave Solutions for Variant Boussinesq Equations 被引量:3
2
作者 WANG Yue-Ming LI Xiang-Zheng +1 位作者 YANG Sen WANG Ming-Liang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第3X期396-400,共5页
We present an F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics, which can be thought of as a concentration of extended Jacobi elliptic function expansion ... We present an F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed recently. By using the F-expansion, without calculating Jacobi elliptic functions, we obtain simultaneously many periodic wave solutions expressed by various Jacobi elliptic functions for the variant Boussinesq equations. When the modulus m approaches 1 and O, the hyperbolic function solutions (including the solitary wave solutions) and trigonometric solutions are also given respectively. 展开更多
关键词 F-expansion variant boussinesq equations periodic wave solutions Jacobi elliptic functions solitary wave solutions
下载PDF
BOUNDED TRAVELING WAVE SOLUTIONS OF VARIANT BOUSSINESQ EQUATION WITH A DISSIPATION TERM AND DISSIPATION EFFECT
3
作者 张卫国 刘强 +1 位作者 李正明 李想 《Acta Mathematica Scientia》 SCIE CSCD 2014年第3期941-959,共19页
This article studies bounded traveling wave solutions of variant Boussinesq equation with a dissipation term and dissipation effect on them. Firstly, we make qualitative analysis to the bounded traveling wave solution... This article studies bounded traveling wave solutions of variant Boussinesq equation with a dissipation term and dissipation effect on them. Firstly, we make qualitative analysis to the bounded traveling wave solutions for the above equation by the theory and method of planar dynamical systems, and obtain their existent conditions, number, and general shape. Secondly, we investigate the dissipation effect on the shape evolution of bounded traveling wave solutions. We find out a critical value r^* which can characterize the scale of dissipation effect, and prove that the bounded traveling wave solutions appear as kink profile waves if |r|≥ r^*; while they appear as damped oscillatory waves if |r| 〈 r^*. We also obtain kink profile solitary wave solutions with and without dissipation effect. On the basis of the above discussion, we sensibly design the structure of the approximate damped oscillatory solutions according to the orbits evolution relation corresponding to the component u(ξ) in the global phase portraits, and then obtain the approximate solutions (u(ξ), H(ξ)). Furthermore, by using homogenization principle, we give their error estimates by establishing the integral equation which reflects the relation between exact and approximate solutions. Finally, we discuss the dissipation effect on the amplitude, frequency, and energy decay of the bounded traveling wave solutions. 展开更多
关键词 variant boussinesq equation with dissipation term shape analysis bounded traveling wave solution error estimate dissipation effect
下载PDF
Solitary Wave and Non-traveling Wave Solutions to Two Nonlinear Evolution Equations 被引量:6
4
作者 YAN Zhi-Lian LIU Xi-Qiang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第3X期479-482,共4页
By applying the extended homogeneous balance method, we find some new explicit solutions to two nonlinear evolution equations, which include n-resonance plane solitary wave and non-traveling wave solutions.
关键词 approximate equations for long water waves variant boussinesq equations non-traveling wave solution solitary wave solution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部