期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于无监督生成推理的网络安全威胁态势评估方法 被引量:23
1
作者 杨宏宇 王峰岩 吕伟力 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第6期474-484,共11页
针对基于数据类别标记的监督式网络数据建模方式在评估网络威胁态势时存在计算成本高,效率低和耗时长的问题,该文提出一种基于无监督生成推理的网络安全威胁态势评估方法。首先,设计一种变分自动编码器-生成式对抗网络(VAE-GAN)模型,将... 针对基于数据类别标记的监督式网络数据建模方式在评估网络威胁态势时存在计算成本高,效率低和耗时长的问题,该文提出一种基于无监督生成推理的网络安全威胁态势评估方法。首先,设计一种变分自动编码器-生成式对抗网络(VAE-GAN)模型,将只包含正常网络流量的训练数据集输入到由VAE-GAN组成的网络集合层进行训练,统计每层网络输出的重构误差,并使用输出层的3层变分自动编码器训练重构误差;然后使用包含异常网络流量的测试数据集进行分组威胁测试,统计每组测试的威胁发生概率;最后根据威胁发生概率确定网络安全威胁严重度,结合威胁影响度计算威胁态势值对网络安全威胁态势进行评估。仿真实验结果表明,与反向传播(BP)和径向基函数(RBF)方法相比,该方法能够更直观地评估网络威胁的整体态势,对网络威胁具有更好的表征效果。 展开更多
关键词 无监督生成推理 变分自动编码器-生成式对抗网络(vae-gan) 威胁发生概率 威胁态势评估
原文传递
VG-DOCoT:a novel DO-Conv and transformer framework via VAE-GAN technique for EEG emotion recognition
2
作者 Yanping ZHU Lei HUANG +3 位作者 Jixin CHEN Shenyun WANG Fayu WAN Jianan CHEN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI 2024年第11期1497-1514,共18页
Human emotions are intricate psychological phenomena that reflect an individual’s current physiological and psychological state.Emotions have a pronounced influence on human behavior,cognition,communication,and decis... Human emotions are intricate psychological phenomena that reflect an individual’s current physiological and psychological state.Emotions have a pronounced influence on human behavior,cognition,communication,and decision-making.However,current emotion recognition methods often suffer from suboptimal performance and limited scalability in practical applications.To solve this problem,a novel electroencephalogram(EEG)emotion recognition network named VG-DOCoT is proposed,which is based on depthwise over-parameterized convolutional(DO-Conv),transformer,and variational automatic encoder-generative adversarial network(VAE-GAN)structures.Specifically,the differential entropy(DE)can be extracted from EEG signals to create mappings into the temporal,spatial,and frequency information in preprocessing.To enhance the training data,VAE-GAN is employed for data augmentation.A novel convolution module DO-Conv is used to replace the traditional convolution layer to improve the network.A transformer structure is introduced into the network framework to reveal the global dependencies from EEG signals.Using the proposed model,a binary classification on the DEAP dataset is carried out,which achieves an accuracy of 92.52%for arousal and 92.27%for valence.Next,a ternary classification is conducted on SEED,which classifies neutral,positive,and negative emotions;an impressive average prediction accuracy of 93.77%is obtained.The proposed method significantly improves the accuracy for EEG-based emotion recognition. 展开更多
关键词 Emotion recognition Electroencephalogram(EEG) Depthwise over-parameterized convolutional(DO-Conv) Transformer Variational automatic encoder-generative adversarial network(vae-gan)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部