The one-dimensional theory of sound propagation in ducts is generalized and investigated in this paper . It can be assumed that any duct system consists of two kinds of elementary structures : One is the piped structu...The one-dimensional theory of sound propagation in ducts is generalized and investigated in this paper . It can be assumed that any duct system consists of two kinds of elementary structures : One is the piped structure in which the characteristics , such as the acoustical parameter on the interior surface of the wall , the cross-section area and the aerodynamic parameters of the flow , etc., will vary continuously and slowly with distance along the axis of the duct . The other is the local structure with discontinuity in which the characteristics will change abruptly. The acoustical properties of both structures are analysed in general cases based upon the fundamental equations of aerodynamics , and their transmission matrixes are derived and discussed respectively . Two typical examples are analysed and discussed .展开更多
This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time...This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time-variant multi-objective linear fractional transportation problem is formulated here. We take into account the parameters as cost, supply and demand are interval valued that involved in the proposed model, so we treat the model as a multi-objective linear fractional interval transportation problem. To solve the formulated model, we first convert it into a deterministic form using a new transformation technique and then apply fuzzy programming to solve it. The applicability of our proposed method is shown by considering two numerical examples. At last, conclusions and future research directions regarding our study is included.展开更多
The production model of“multi-specification and low-quantity”is becoming the main trend of manufacturing industry.As a key activity in the manufacturing chain,traditional computer aided process planning(CAPP)system ...The production model of“multi-specification and low-quantity”is becoming the main trend of manufacturing industry.As a key activity in the manufacturing chain,traditional computer aided process planning(CAPP)system fails to adapt to the production model of customization.Therefore,a novel method for variant design of process planning was proposed to develop CAPP system based on Tabular Layouts of Article Characteristics(Sach-Merk Leisten in German and SML for short). With the support of standard database of master process planning documents which are developed by parameterization technique, and instance process planning for special product(instance product)can be generated automatically by the sub-system of variant de- sign of process planning.Finally,a CAPP system was developed for process design of rotor of steam turbine to validate the feasibil- ity and applicability of the method.展开更多
Recent advances in computer with geographic information system(GIS) technologies have allowed modelers to develop physics-based models for modeling soil erosion processes in time and space.However, it has been widely ...Recent advances in computer with geographic information system(GIS) technologies have allowed modelers to develop physics-based models for modeling soil erosion processes in time and space.However, it has been widely recognized that the effect of uncertainties on model predictions may be more significant when modelers apply such models for their own modeling purposes.Sources of uncertainty involved in modeling include data, model structural, and parameter uncertainty.To deal with the uncertain parameters of a catchment-scale soil erosion model(CSEM) and assess simulation uncertainties in soil erosion, particle filtering modeling(PF) is introduced in the CSEM.The proposed method, CSEM-PF, estimates parameters of non-linear and non-Gaussian systems, such as a physics-based soil erosion model by assimilating observation data such as discharge and sediment discharge sequences at outlets.PF provides timevarying feasible parameter sets as well as uncertainty bounds of outputs while traditional automatic calibration techniques result in a time-invariant global optimal parameter set.CSEM-PF was applied to a small mountainous catchment of the Yongdamdam in Korea for soil erosion modeling and uncertainty assessment for three historical typhoon events.Finally, the most optimal parameter sets and uncertainty bounds of simulation of both discharge and sediment discharge at each time step of the study events are provided.展开更多
文摘The one-dimensional theory of sound propagation in ducts is generalized and investigated in this paper . It can be assumed that any duct system consists of two kinds of elementary structures : One is the piped structure in which the characteristics , such as the acoustical parameter on the interior surface of the wall , the cross-section area and the aerodynamic parameters of the flow , etc., will vary continuously and slowly with distance along the axis of the duct . The other is the local structure with discontinuity in which the characteristics will change abruptly. The acoustical properties of both structures are analysed in general cases based upon the fundamental equations of aerodynamics , and their transmission matrixes are derived and discussed respectively . Two typical examples are analysed and discussed .
文摘This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time-variant multi-objective linear fractional transportation problem is formulated here. We take into account the parameters as cost, supply and demand are interval valued that involved in the proposed model, so we treat the model as a multi-objective linear fractional interval transportation problem. To solve the formulated model, we first convert it into a deterministic form using a new transformation technique and then apply fuzzy programming to solve it. The applicability of our proposed method is shown by considering two numerical examples. At last, conclusions and future research directions regarding our study is included.
文摘The production model of“multi-specification and low-quantity”is becoming the main trend of manufacturing industry.As a key activity in the manufacturing chain,traditional computer aided process planning(CAPP)system fails to adapt to the production model of customization.Therefore,a novel method for variant design of process planning was proposed to develop CAPP system based on Tabular Layouts of Article Characteristics(Sach-Merk Leisten in German and SML for short). With the support of standard database of master process planning documents which are developed by parameterization technique, and instance process planning for special product(instance product)can be generated automatically by the sub-system of variant de- sign of process planning.Finally,a CAPP system was developed for process design of rotor of steam turbine to validate the feasibil- ity and applicability of the method.
基金supported by Korea Ministry of Environment(MOE)as"GAIA Program2014000540005"
文摘Recent advances in computer with geographic information system(GIS) technologies have allowed modelers to develop physics-based models for modeling soil erosion processes in time and space.However, it has been widely recognized that the effect of uncertainties on model predictions may be more significant when modelers apply such models for their own modeling purposes.Sources of uncertainty involved in modeling include data, model structural, and parameter uncertainty.To deal with the uncertain parameters of a catchment-scale soil erosion model(CSEM) and assess simulation uncertainties in soil erosion, particle filtering modeling(PF) is introduced in the CSEM.The proposed method, CSEM-PF, estimates parameters of non-linear and non-Gaussian systems, such as a physics-based soil erosion model by assimilating observation data such as discharge and sediment discharge sequences at outlets.PF provides timevarying feasible parameter sets as well as uncertainty bounds of outputs while traditional automatic calibration techniques result in a time-invariant global optimal parameter set.CSEM-PF was applied to a small mountainous catchment of the Yongdamdam in Korea for soil erosion modeling and uncertainty assessment for three historical typhoon events.Finally, the most optimal parameter sets and uncertainty bounds of simulation of both discharge and sediment discharge at each time step of the study events are provided.