Single nucletide polymorphism(SNP)is an important factor for the study of genetic variation in human families and animal and plant strains.Therefore,it is widely used in the study of population genetics and disease re...Single nucletide polymorphism(SNP)is an important factor for the study of genetic variation in human families and animal and plant strains.Therefore,it is widely used in the study of population genetics and disease related gene.In pharmacogenomics research,identifying the association between SNP site and drug is the key to clinical precision medication,therefore,a predictive model of SNP site and drug association based on denoising variational auto-encoder(DVAE-SVM)is proposed.Firstly,k-mer algorithm is used to construct the initial SNP site feature vector,meanwhile,MACCS molecular fingerprint is introduced to generate the feature vector of the drug module.Then,we use the DVAE to extract the effective features of the initial feature vector of the SNP site.Finally,the effective feature vector of the SNP site and the feature vector of the drug module are fused input to the support vector machines(SVM)to predict the relationship of SNP site and drug module.The results of five-fold cross-validation experiments indicate that the proposed algorithm performs better than random forest(RF)and logistic regression(LR)classification.Further experiments show that compared with the feature extraction algorithms of principal component analysis(PCA),denoising auto-encoder(DAE)and variational auto-encode(VAE),the proposed algorithm has better prediction results.展开更多
Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This st...Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.展开更多
Predicting the usage of container cloud resources has always been an important and challenging problem in improving the performance of cloud resource clusters.We proposed an integrated prediction method of stacking co...Predicting the usage of container cloud resources has always been an important and challenging problem in improving the performance of cloud resource clusters.We proposed an integrated prediction method of stacking container cloud resources based on variational modal decomposition(VMD)-Permutation entropy(PE)and long short-term memory(LSTM)neural network to solve the prediction difficulties caused by the non-stationarity and volatility of resource data.The variational modal decomposition algorithm decomposes the time series data of cloud resources to obtain intrinsic mode function and residual components,which solves the signal decomposition algorithm’s end-effect and modal confusion problems.The permutation entropy is used to evaluate the complexity of the intrinsic mode function,and the reconstruction based on similar entropy and low complexity is used to reduce the difficulty of modeling.Finally,we use the LSTM and stacking fusion models to predict and superimpose;the stacking integration model integrates Gradient boosting regression(GBR),Kernel ridge regression(KRR),and Elastic net regression(ENet)as primary learners,and the secondary learner adopts the kernel ridge regression method with solid generalization ability.The Amazon public data set experiment shows that compared with Holt-winters,LSTM,and Neuralprophet models,we can see that the optimization range of multiple evaluation indicators is 0.338∼1.913,0.057∼0.940,0.000∼0.017 and 1.038∼8.481 in root means square error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE)and variance(VAR),showing its stability and better prediction accuracy.展开更多
Prediction intervals(PIs)for industrial time series can provide useful guidance for workers.Given that the failure of industrial sensors may cause the missing point in inputs,the existing kernel dynamic Bayesian netwo...Prediction intervals(PIs)for industrial time series can provide useful guidance for workers.Given that the failure of industrial sensors may cause the missing point in inputs,the existing kernel dynamic Bayesian networks(KDBN),serving as an effective method for PIs construction,suffer from high computational load using the stochastic algorithm for inference.This study proposes a variational inference method for the KDBN for the purpose of fast inference,which avoids the timeconsuming stochastic sampling.The proposed algorithm contains two stages.The first stage involves the inference of the missing inputs by using a local linearization based variational inference,and based on the computed posterior distributions over the missing inputs the second stage sees a Gaussian approximation for probability over the nodes in future time slices.To verify the effectiveness of the proposed method,a synthetic dataset and a practical dataset of generation flow of blast furnace gas(BFG)are employed with different ratios of missing inputs.The experimental results indicate that the proposed method can provide reliable PIs for the generation flow of BFG and it exhibits shorter computing time than the stochastic based one.展开更多
Since the effectiveness of extracting fault features is not high under traditional bearing fault diagnosis method, a bearing fault diagnosis method based on Deep Auto-encoder Network (DAEN) optimized by Cloud Adaptive...Since the effectiveness of extracting fault features is not high under traditional bearing fault diagnosis method, a bearing fault diagnosis method based on Deep Auto-encoder Network (DAEN) optimized by Cloud Adaptive Particle Swarm Optimization (CAPSO) was proposed. On the basis of analyzing CAPSO and DAEN, the CAPSO-DAEN fault diagnosis model is built. The model uses the randomness and stability of CAPSO algorithm to optimize the connection weight of DAEN, to reduce the constraints on the weights and extract fault features adaptively. Finally, efficient and accurate fault diagnosis can be implemented with the Softmax classifier. The results of test show that the proposed method has higher diagnostic accuracy and more stable diagnosis results than those based on the DAEN, Support Vector Machine (SVM) and the Back Propagation algorithm (BP) under appropriate parameters.展开更多
Generative AI models for music and the arts in general are increasingly complex and hard to understand.The field of ex-plainable AI(XAI)seeks to make complex and opaque AI models such as neural networks more understan...Generative AI models for music and the arts in general are increasingly complex and hard to understand.The field of ex-plainable AI(XAI)seeks to make complex and opaque AI models such as neural networks more understandable to people.One ap-proach to making generative AI models more understandable is to impose a small number of semantically meaningful attributes on gen-erative AI models.This paper contributes a systematic examination of the impact that different combinations of variational auto-en-coder models(measureVAE and adversarialVAE),configurations of latent space in the AI model(from 4 to 256 latent dimensions),and training datasets(Irish folk,Turkish folk,classical,and pop)have on music generation performance when 2 or 4 meaningful musical at-tributes are imposed on the generative model.To date,there have been no systematic comparisons of such models at this level of com-binatorial detail.Our findings show that measureVAE has better reconstruction performance than adversarialVAE which has better musical attribute independence.Results demonstrate that measureVAE was able to generate music across music genres with inter-pretable musical dimensions of control,and performs best with low complexity music such as pop and rock.We recommend that a 32 or 64 latent dimensional space is optimal for 4 regularised dimensions when using measureVAE to generate music across genres.Our res-ults are the first detailed comparisons of configurations of state-of-the-art generative AI models for music and can be used to help select and configure AI models,musical features,and datasets for more understandable generation of music.展开更多
Real-time 6 Degree-of-Freedom(DoF)pose estimation is of paramount importance for various on-orbit tasks.Benefiting from the development of deep learning,Convolutional Neural Networks(CNNs)in feature extraction has yie...Real-time 6 Degree-of-Freedom(DoF)pose estimation is of paramount importance for various on-orbit tasks.Benefiting from the development of deep learning,Convolutional Neural Networks(CNNs)in feature extraction has yielded impressive achievements for spacecraft pose estimation.To improve the robustness and interpretability of CNNs,this paper proposes a Pose Estimation approach based on Variational Auto-Encoder structure(PE-VAE)and a Feature-Aided pose estimation approach based on Variational Auto-Encoder structure(FA-VAE),which aim to accurately estimate the 6 DoF pose of a target spacecraft.Both methods treat the pose vector as latent variables,employing an encoder-decoder network with a Variational Auto-Encoder(VAE)structure.To enhance the precision of pose estimation,PE-VAE uses the VAE structure to introduce reconstruction mechanism with the whole image.Furthermore,FA-VAE enforces feature shape constraints by exclusively reconstructing the segment of the target spacecraft with the desired shape.Comparative evaluation against leading methods on public datasets reveals similar accuracy with a threefold improvement in processing speed,showcasing the significant contribution of VAE structures to accuracy enhancement,and the additional benefit of incorporating global shape prior features.展开更多
Exposure to poor indoor air conditions poses significant risks to human health, increasing morbidity and mortality rates. Soft measurement modeling is suitable for stable and accurate monitoring of air pollutants and ...Exposure to poor indoor air conditions poses significant risks to human health, increasing morbidity and mortality rates. Soft measurement modeling is suitable for stable and accurate monitoring of air pollutants and improving air quality. Based on partial least squares (PLS), we propose an indoor air quality prediction model that utilizes variational auto-encoder regression (VAER) algorithm. To reduce the negative effects of noise, latent variables in the original data are extracted by PLS in the first step. Then, the extracted variables are used as inputs to VAER, which improve the accuracy and robustness of the model. Through comparative analysis with traditional methods, we demonstrate the superior performance of our PLS-VAER model, which exhibits improved prediction performance and stability. The root mean square error (RMSE) of PLS-VAER is reduced by 14.71%, 26.47%, and 12.50% compared to single VAER, PLS-SVR, and PLS-ANN, respectively. Additionally, the coefficient of determination (R2) of PLS-VAER improves by 13.70%, 30.09%, and 11.25% compared to single VAER, PLS-SVR, and PLS-ANN, respectively. This research offers an innovative and environmentally-friendly approach to monitor and improve indoor air quality.展开更多
In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniq...In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniques and tries to combine nodes’textual content for modelling.They still do not,however,directly simulate many interactions in network learning.In order to address these issues,we present a novel system that more thoroughly integrates user preferences and citation networks into article labelling recommendations.Specifically,we first employ path similarity to quantify the degree of similarity between user labelling preferences and articles in the citation network.Then,the Commuting Matrix for massive node pair paths is used to improve computational performance.Finally,the two commonalities mentioned above are combined with the interaction paper labels based on the additivity of Poisson distribution.In addition,we also consider solving the model’s parameters by applying variational inference.Experimental results demonstrate that our suggested framework agrees and significantly outperforms the state-of-the-art baseline on two real datasets by efficiently merging the three relational data.Based on the Area Under Curve(AUC)and Mean Average Precision(MAP)analysis,the performance of the suggested task is evaluated,and it is demonstrated to have a greater solving efficiency than current techniques.展开更多
The equivalent filter modeling of a rectangular dielectric post in a rectangular waveguide is obtained through the variational expression of input impedance. The reflection coefficient expressed in components of netwo...The equivalent filter modeling of a rectangular dielectric post in a rectangular waveguide is obtained through the variational expression of input impedance. The reflection coefficient expressed in components of network is in good agreement with the results given by K. Siakavara, et al. (1991), The method can be applied to design filter.展开更多
As a typical physical retrieval algorithm for retrieving atmospheric parameters,one-dimensional variational(1 DVAR)algorithm is widely used in various climate and meteorological communities and enjoys an important pos...As a typical physical retrieval algorithm for retrieving atmospheric parameters,one-dimensional variational(1 DVAR)algorithm is widely used in various climate and meteorological communities and enjoys an important position in the field of microwave remote sensing.Among algorithm parameters affecting the performance of the 1 DVAR algorithm,the accuracy of the microwave radiative transfer model for calculating the simulated brightness temperature is the fundamental constraint on the retrieval accuracies of the 1 DVAR algorithm for retrieving atmospheric parameters.In this study,a deep neural network(DNN)is used to describe the nonlinear relationship between atmospheric parameters and satellite-based microwave radiometer observations,and a DNN-based radiative transfer model is developed and applied to the 1 DVAR algorithm to carry out retrieval experiments of the atmospheric temperature and humidity profiles.The retrieval results of the temperature and humidity profiles from the Microwave Humidity and Temperature Sounder(MWHTS)onboard the Feng-Yun-3(FY-3)satellite show that the DNN-based radiative transfer model can obtain higher accuracy for simulating MWHTS observations than that of the operational radiative transfer model RTTOV,and also enables the 1 DVAR algorithm to obtain higher retrieval accuracies of the temperature and humidity profiles.In this study,the DNN-based radiative transfer model applied to the 1 DVAR algorithm can fundamentally improve the retrieval accuracies of atmospheric parameters,which may provide important reference for various applied studies in atmospheric sciences.展开更多
The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in Chin...The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin.展开更多
The simulation of salinity at different locations of a tidal river using physically-based hydrodynamic models is quite cumbersome because it requires many types of data, such as hydrological and hydraulic time series ...The simulation of salinity at different locations of a tidal river using physically-based hydrodynamic models is quite cumbersome because it requires many types of data, such as hydrological and hydraulic time series at boundaries, river geometry, and adjusted coefficients. Therefore, an artificial neural network (ANN) technique using a back-propagation neural network (BPNN) and a radial basis function neural network (RBFNN) is adopted as an effective alternative in salinity simulation studies. The present study focuses on comparing the performance of BPNN, RBFNN, and three-dimensional hydrodynamic models as applied to a tidal estuarine system. The observed salinity data sets collected from 18 to 22 May, 16 to 22 October, and 26 to 30 October 2002 (totaling 4320 data points) were used for BPNN and RBFNN model training and for hydrodynamic model calibration. The data sets collected from 30 May to 2 June and 11 to 15 November 2002 (totaling 2592 data points) were adopted for BPNN and RBFNN model verification and for hydrodynamic model verification. The results revealed that the ANN (BPNN and RBFNN) models were capable of predicting the nonlinear time series behavior of salinity to the multiple forcing signals of water stages at different stations and freshwater input at upstream boundaries. The salinity predicted by the ANN models was better than that predicted by the physically based hydrodynamic model. This study suggests that BPNN and RBFNN models are easy-to-use modeling tools for simulating the salinity variation in a tidal estuarine system.展开更多
The influenza virus changes its antigenicity frequently due to rapid mutations, leading to immune escape and failure of vaccination. Rapid determination of the influenza antigenicity could help identify the antigenic ...The influenza virus changes its antigenicity frequently due to rapid mutations, leading to immune escape and failure of vaccination. Rapid determination of the influenza antigenicity could help identify the antigenic variants in time. Here, we built a stacked auto-encoder (SAE) model for predicting the antigenic variant of human influenza A(H3N2) viruses based on the hemagglutinin (HA) protein sequences. The model achieved an accuracy of 0.95 in five-fold cross-validations, better than the logistic regression model did. Further analysis of the model shows that most of the active nodes in the hidden layer reflected the combined contribution of multiple residues to antigenic variation. Besides, some features (residues on HA protein) in the input layer were observed to take part in multiple active nodes, such as residue 189, 145 and 156, which were also reported to mostly determine the antigenic variation of influenza A(H3N2) viruses. Overall,this work is not only useful for rapidly identifying antigenic variants in influenza prevention, but also an interesting attempt in inferring the mechanisms of biological process through analysis of SAE model, which may give some insights into interpretation of the deep learning展开更多
In recent years,radiotherapy based only on Magnetic Resonance(MR)images has become a hot spot for radiotherapy planning research in the current medical field.However,functional computed tomography(CT)is still needed f...In recent years,radiotherapy based only on Magnetic Resonance(MR)images has become a hot spot for radiotherapy planning research in the current medical field.However,functional computed tomography(CT)is still needed for dose calculation in the clinic.Recent deep-learning approaches to synthesized CT images from MR images have raised much research interest,making radiotherapy based only on MR images possible.In this paper,we proposed a novel unsupervised image synthesis framework with registration networks.This paper aims to enforce the constraints between the reconstructed image and the input image by registering the reconstructed image with the input image and registering the cycle-consistent image with the input image.Furthermore,this paper added ConvNeXt blocks to the network and used large kernel convolutional layers to improve the network’s ability to extract features.This research used the collected head and neck data of 180 patients with nasopharyngeal carcinoma to experiment and evaluate the training model with four evaluation metrics.At the same time,this research made a quantitative comparison of several commonly used model frameworks.We evaluate the model performance in four evaluation metrics which achieve Mean Absolute Error(MAE),Root Mean Square Error(RMSE),Peak Signal-to-Noise Ratio(PSNR),and Structural Similarity(SSIM)are 18.55±1.44,86.91±4.31,33.45±0.74 and 0.960±0.005,respectively.Compared with other methods,MAE decreased by 2.17,RMSE decreased by 7.82,PSNR increased by 0.76,and SSIM increased by 0.011.The results show that the model proposed in this paper outperforms other methods in the quality of image synthesis.The work in this paper is of guiding significance to the study of MR-only radiotherapy planning.展开更多
In network settings,one of the major disadvantages that threaten the network protocols is the insecurity.In most cases,unscrupulous people or bad actors can access information through unsecured connections by planting...In network settings,one of the major disadvantages that threaten the network protocols is the insecurity.In most cases,unscrupulous people or bad actors can access information through unsecured connections by planting software or what we call malicious software otherwise anomalies.The presence of anomalies is also one of the disadvantages,internet users are constantly plagued by virus on their system and get activated when a harmless link is clicked on,this a case of true benign detected as false.Deep learning is very adept at dealing with such cases,but sometimes it has its own faults when dealing benign cases.Here we tend to adopt a dynamic control system(DCSYS)that addresses data packets based on benign scenario to truly report on false benign and exclude anomalies.Its performance is compared with artificial neural network auto-encoders to define its predictive power.Results show that though physical systems can adapt securely,it can be used for network data packets to identify true benign cases.展开更多
A variation-aware task mapping approach is proposed for a multi-core network-on-chips with redundant cores, which includes both the design-time mapping and run-time scheduling algorithms. Firstly, a design-time geneti...A variation-aware task mapping approach is proposed for a multi-core network-on-chips with redundant cores, which includes both the design-time mapping and run-time scheduling algorithms. Firstly, a design-time genetic task mapping algorithm is proposed during the design stage to generate multiple task mapping solutions which cover a maximum range of chips. Then, during the run, one optimal task mapping solution is selected. Additionally, logical cores are mapped to physically available cores. Both core asymmetry and topological changes are considered in the proposed approach. Experimental results show that the performance yield of the proposed approach is 96% on average, and the communication cost, power consumption and peak temperature are all optimized without loss of performance yield.展开更多
In recent years,computer visionfinds wide applications in maritime surveillance with its sophisticated algorithms and advanced architecture.Auto-matic ship detection with computer vision techniques provide an efficien...In recent years,computer visionfinds wide applications in maritime surveillance with its sophisticated algorithms and advanced architecture.Auto-matic ship detection with computer vision techniques provide an efficient means to monitor as well as track ships in water bodies.Waterways being an important medium of transport require continuous monitoring for protection of national security.The remote sensing satellite images of ships in harbours and water bodies are the image data that aid the neural network models to localize ships and to facilitate early identification of possible threats at sea.This paper proposes a deep learning based model capable enough to classify between ships and no-ships as well as to localize ships in the original images using bounding box tech-nique.Furthermore,classified ships are again segmented with deep learning based auto-encoder model.The proposed model,in terms of classification,provides suc-cessful results generating 99.5%and 99.2%validation and training accuracy respectively.The auto-encoder model also produces 85.1%and 84.2%validation and training accuracies.Moreover the IoU metric of the segmented images is found to be of 0.77 value.The experimental results reveal that the model is accu-rate and can be implemented for automatic ship detection in water bodies consid-ering remote sensing satellite images as input to the computer vision system.展开更多
Backdoor attacks are emerging security threats to deep neural networks.In these attacks,adversaries manipulate the network by constructing training samples embedded with backdoor triggers.The backdoored model performs...Backdoor attacks are emerging security threats to deep neural networks.In these attacks,adversaries manipulate the network by constructing training samples embedded with backdoor triggers.The backdoored model performs as expected on clean test samples but consistently misclassifies samples containing the backdoor trigger as a specific target label.While quantum neural networks(QNNs)have shown promise in surpassing their classical counterparts in certain machine learning tasks,they are also susceptible to backdoor attacks.However,current attacks on QNNs are constrained by the adversary's understanding of the model structure and specific encoding methods.Given the diversity of encoding methods and model structures in QNNs,the effectiveness of such backdoor attacks remains uncertain.In this paper,we propose an algorithm that leverages dataset-based optimization to initiate backdoor attacks.A malicious adversary can embed backdoor triggers into a QNN model by poisoning only a small portion of the data.The victim QNN maintains high accuracy on clean test samples without the trigger but outputs the target label set by the adversary when predicting samples with the trigger.Furthermore,our proposed attack cannot be easily resisted by existing backdoor detection methods.展开更多
Contemporary attackers,mainly motivated by financial gain,consistently devise sophisticated penetration techniques to access important information or data.The growing use of Internet of Things(IoT)technology in the co...Contemporary attackers,mainly motivated by financial gain,consistently devise sophisticated penetration techniques to access important information or data.The growing use of Internet of Things(IoT)technology in the contemporary convergence environment to connect to corporate networks and cloud-based applications only worsens this situation,as it facilitates multiple new attack vectors to emerge effortlessly.As such,existing intrusion detection systems suffer from performance degradation mainly because of insufficient considerations and poorly modeled detection systems.To address this problem,we designed a blended threat detection approach,considering the possible impact and dimensionality of new attack surfaces due to the aforementioned convergence.We collectively refer to the convergence of different technology sectors as the internet of blended environment.The proposed approach encompasses an ensemble of heterogeneous probabilistic autoencoders that leverage the corresponding advantages of a convolutional variational autoencoder and long short-term memory variational autoencoder.An extensive experimental analysis conducted on the TON_IoT dataset demonstrated 96.02%detection accuracy.Furthermore,performance of the proposed approach was compared with various single model(autoencoder)-based network intrusion detection approaches:autoencoder,variational autoencoder,convolutional variational autoencoder,and long short-term memory variational autoencoder.The proposed model outperformed all compared models,demonstrating F1-score improvements of 4.99%,2.25%,1.92%,and 3.69%,respectively.展开更多
基金Lanzhou Talent Innovation and Entrepreneurship Project(No.2020-RC-14)。
文摘Single nucletide polymorphism(SNP)is an important factor for the study of genetic variation in human families and animal and plant strains.Therefore,it is widely used in the study of population genetics and disease related gene.In pharmacogenomics research,identifying the association between SNP site and drug is the key to clinical precision medication,therefore,a predictive model of SNP site and drug association based on denoising variational auto-encoder(DVAE-SVM)is proposed.Firstly,k-mer algorithm is used to construct the initial SNP site feature vector,meanwhile,MACCS molecular fingerprint is introduced to generate the feature vector of the drug module.Then,we use the DVAE to extract the effective features of the initial feature vector of the SNP site.Finally,the effective feature vector of the SNP site and the feature vector of the drug module are fused input to the support vector machines(SVM)to predict the relationship of SNP site and drug module.The results of five-fold cross-validation experiments indicate that the proposed algorithm performs better than random forest(RF)and logistic regression(LR)classification.Further experiments show that compared with the feature extraction algorithms of principal component analysis(PCA),denoising auto-encoder(DAE)and variational auto-encode(VAE),the proposed algorithm has better prediction results.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3080200)the National Natural Science Foundation of China(Grant No.42022053)the China Postdoctoral Science Foundation(Grant No.2023M731264).
文摘Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.
基金The National Natural Science Foundation of China (No.62262011)The Natural Science Foundation of Guangxi (No.2021JJA170130).
文摘Predicting the usage of container cloud resources has always been an important and challenging problem in improving the performance of cloud resource clusters.We proposed an integrated prediction method of stacking container cloud resources based on variational modal decomposition(VMD)-Permutation entropy(PE)and long short-term memory(LSTM)neural network to solve the prediction difficulties caused by the non-stationarity and volatility of resource data.The variational modal decomposition algorithm decomposes the time series data of cloud resources to obtain intrinsic mode function and residual components,which solves the signal decomposition algorithm’s end-effect and modal confusion problems.The permutation entropy is used to evaluate the complexity of the intrinsic mode function,and the reconstruction based on similar entropy and low complexity is used to reduce the difficulty of modeling.Finally,we use the LSTM and stacking fusion models to predict and superimpose;the stacking integration model integrates Gradient boosting regression(GBR),Kernel ridge regression(KRR),and Elastic net regression(ENet)as primary learners,and the secondary learner adopts the kernel ridge regression method with solid generalization ability.The Amazon public data set experiment shows that compared with Holt-winters,LSTM,and Neuralprophet models,we can see that the optimization range of multiple evaluation indicators is 0.338∼1.913,0.057∼0.940,0.000∼0.017 and 1.038∼8.481 in root means square error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE)and variance(VAR),showing its stability and better prediction accuracy.
基金supported by the National Key Research andDevelopment Program of China(2017YFA0700300)the National Natural Sciences Foundation of China(61533005,61703071,61603069)。
文摘Prediction intervals(PIs)for industrial time series can provide useful guidance for workers.Given that the failure of industrial sensors may cause the missing point in inputs,the existing kernel dynamic Bayesian networks(KDBN),serving as an effective method for PIs construction,suffer from high computational load using the stochastic algorithm for inference.This study proposes a variational inference method for the KDBN for the purpose of fast inference,which avoids the timeconsuming stochastic sampling.The proposed algorithm contains two stages.The first stage involves the inference of the missing inputs by using a local linearization based variational inference,and based on the computed posterior distributions over the missing inputs the second stage sees a Gaussian approximation for probability over the nodes in future time slices.To verify the effectiveness of the proposed method,a synthetic dataset and a practical dataset of generation flow of blast furnace gas(BFG)are employed with different ratios of missing inputs.The experimental results indicate that the proposed method can provide reliable PIs for the generation flow of BFG and it exhibits shorter computing time than the stochastic based one.
文摘Since the effectiveness of extracting fault features is not high under traditional bearing fault diagnosis method, a bearing fault diagnosis method based on Deep Auto-encoder Network (DAEN) optimized by Cloud Adaptive Particle Swarm Optimization (CAPSO) was proposed. On the basis of analyzing CAPSO and DAEN, the CAPSO-DAEN fault diagnosis model is built. The model uses the randomness and stability of CAPSO algorithm to optimize the connection weight of DAEN, to reduce the constraints on the weights and extract fault features adaptively. Finally, efficient and accurate fault diagnosis can be implemented with the Softmax classifier. The results of test show that the proposed method has higher diagnostic accuracy and more stable diagnosis results than those based on the DAEN, Support Vector Machine (SVM) and the Back Propagation algorithm (BP) under appropriate parameters.
文摘Generative AI models for music and the arts in general are increasingly complex and hard to understand.The field of ex-plainable AI(XAI)seeks to make complex and opaque AI models such as neural networks more understandable to people.One ap-proach to making generative AI models more understandable is to impose a small number of semantically meaningful attributes on gen-erative AI models.This paper contributes a systematic examination of the impact that different combinations of variational auto-en-coder models(measureVAE and adversarialVAE),configurations of latent space in the AI model(from 4 to 256 latent dimensions),and training datasets(Irish folk,Turkish folk,classical,and pop)have on music generation performance when 2 or 4 meaningful musical at-tributes are imposed on the generative model.To date,there have been no systematic comparisons of such models at this level of com-binatorial detail.Our findings show that measureVAE has better reconstruction performance than adversarialVAE which has better musical attribute independence.Results demonstrate that measureVAE was able to generate music across music genres with inter-pretable musical dimensions of control,and performs best with low complexity music such as pop and rock.We recommend that a 32 or 64 latent dimensional space is optimal for 4 regularised dimensions when using measureVAE to generate music across genres.Our res-ults are the first detailed comparisons of configurations of state-of-the-art generative AI models for music and can be used to help select and configure AI models,musical features,and datasets for more understandable generation of music.
基金supported by the National Natural Science Foundation of China(No.52272390)the Natural Science Foundation of Heilongjiang Province of China(No.YQ2022A009)the Shanghai Sailing Program,China(No.20YF1417300).
文摘Real-time 6 Degree-of-Freedom(DoF)pose estimation is of paramount importance for various on-orbit tasks.Benefiting from the development of deep learning,Convolutional Neural Networks(CNNs)in feature extraction has yielded impressive achievements for spacecraft pose estimation.To improve the robustness and interpretability of CNNs,this paper proposes a Pose Estimation approach based on Variational Auto-Encoder structure(PE-VAE)and a Feature-Aided pose estimation approach based on Variational Auto-Encoder structure(FA-VAE),which aim to accurately estimate the 6 DoF pose of a target spacecraft.Both methods treat the pose vector as latent variables,employing an encoder-decoder network with a Variational Auto-Encoder(VAE)structure.To enhance the precision of pose estimation,PE-VAE uses the VAE structure to introduce reconstruction mechanism with the whole image.Furthermore,FA-VAE enforces feature shape constraints by exclusively reconstructing the segment of the target spacecraft with the desired shape.Comparative evaluation against leading methods on public datasets reveals similar accuracy with a threefold improvement in processing speed,showcasing the significant contribution of VAE structures to accuracy enhancement,and the additional benefit of incorporating global shape prior features.
基金supported by the Opening Project of Guangxi Key Laboratory of Clean Pulp&Papermaking and Pollution Control,China(No.2021KF11)the Shandong Provincial Natural Science Foundation,China(No.ZR2021MF135)+1 种基金the National Natural Science Foundation of China(No.52170001)the Natural Science Foundation of Jiangsu Provincial Universities,China(No.22KJA530003).
文摘Exposure to poor indoor air conditions poses significant risks to human health, increasing morbidity and mortality rates. Soft measurement modeling is suitable for stable and accurate monitoring of air pollutants and improving air quality. Based on partial least squares (PLS), we propose an indoor air quality prediction model that utilizes variational auto-encoder regression (VAER) algorithm. To reduce the negative effects of noise, latent variables in the original data are extracted by PLS in the first step. Then, the extracted variables are used as inputs to VAER, which improve the accuracy and robustness of the model. Through comparative analysis with traditional methods, we demonstrate the superior performance of our PLS-VAER model, which exhibits improved prediction performance and stability. The root mean square error (RMSE) of PLS-VAER is reduced by 14.71%, 26.47%, and 12.50% compared to single VAER, PLS-SVR, and PLS-ANN, respectively. Additionally, the coefficient of determination (R2) of PLS-VAER improves by 13.70%, 30.09%, and 11.25% compared to single VAER, PLS-SVR, and PLS-ANN, respectively. This research offers an innovative and environmentally-friendly approach to monitor and improve indoor air quality.
基金supported by the National Natural Science Foundation of China(No.62271274).
文摘In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniques and tries to combine nodes’textual content for modelling.They still do not,however,directly simulate many interactions in network learning.In order to address these issues,we present a novel system that more thoroughly integrates user preferences and citation networks into article labelling recommendations.Specifically,we first employ path similarity to quantify the degree of similarity between user labelling preferences and articles in the citation network.Then,the Commuting Matrix for massive node pair paths is used to improve computational performance.Finally,the two commonalities mentioned above are combined with the interaction paper labels based on the additivity of Poisson distribution.In addition,we also consider solving the model’s parameters by applying variational inference.Experimental results demonstrate that our suggested framework agrees and significantly outperforms the state-of-the-art baseline on two real datasets by efficiently merging the three relational data.Based on the Area Under Curve(AUC)and Mean Average Precision(MAP)analysis,the performance of the suggested task is evaluated,and it is demonstrated to have a greater solving efficiency than current techniques.
文摘The equivalent filter modeling of a rectangular dielectric post in a rectangular waveguide is obtained through the variational expression of input impedance. The reflection coefficient expressed in components of network is in good agreement with the results given by K. Siakavara, et al. (1991), The method can be applied to design filter.
基金National Natural Science Foundation of China(41901297,41806209)Science and Technology Key Project of Henan Province(202102310017)+1 种基金Key Research Projects for the Universities of Henan Province(20A170013)China Postdoctoral Science Foundation(2021M693201)。
文摘As a typical physical retrieval algorithm for retrieving atmospheric parameters,one-dimensional variational(1 DVAR)algorithm is widely used in various climate and meteorological communities and enjoys an important position in the field of microwave remote sensing.Among algorithm parameters affecting the performance of the 1 DVAR algorithm,the accuracy of the microwave radiative transfer model for calculating the simulated brightness temperature is the fundamental constraint on the retrieval accuracies of the 1 DVAR algorithm for retrieving atmospheric parameters.In this study,a deep neural network(DNN)is used to describe the nonlinear relationship between atmospheric parameters and satellite-based microwave radiometer observations,and a DNN-based radiative transfer model is developed and applied to the 1 DVAR algorithm to carry out retrieval experiments of the atmospheric temperature and humidity profiles.The retrieval results of the temperature and humidity profiles from the Microwave Humidity and Temperature Sounder(MWHTS)onboard the Feng-Yun-3(FY-3)satellite show that the DNN-based radiative transfer model can obtain higher accuracy for simulating MWHTS observations than that of the operational radiative transfer model RTTOV,and also enables the 1 DVAR algorithm to obtain higher retrieval accuracies of the temperature and humidity profiles.In this study,the DNN-based radiative transfer model applied to the 1 DVAR algorithm can fundamentally improve the retrieval accuracies of atmospheric parameters,which may provide important reference for various applied studies in atmospheric sciences.
基金National Natural Science Foundation of China, No.40335046
文摘The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin.
文摘The simulation of salinity at different locations of a tidal river using physically-based hydrodynamic models is quite cumbersome because it requires many types of data, such as hydrological and hydraulic time series at boundaries, river geometry, and adjusted coefficients. Therefore, an artificial neural network (ANN) technique using a back-propagation neural network (BPNN) and a radial basis function neural network (RBFNN) is adopted as an effective alternative in salinity simulation studies. The present study focuses on comparing the performance of BPNN, RBFNN, and three-dimensional hydrodynamic models as applied to a tidal estuarine system. The observed salinity data sets collected from 18 to 22 May, 16 to 22 October, and 26 to 30 October 2002 (totaling 4320 data points) were used for BPNN and RBFNN model training and for hydrodynamic model calibration. The data sets collected from 30 May to 2 June and 11 to 15 November 2002 (totaling 2592 data points) were adopted for BPNN and RBFNN model verification and for hydrodynamic model verification. The results revealed that the ANN (BPNN and RBFNN) models were capable of predicting the nonlinear time series behavior of salinity to the multiple forcing signals of water stages at different stations and freshwater input at upstream boundaries. The salinity predicted by the ANN models was better than that predicted by the physically based hydrodynamic model. This study suggests that BPNN and RBFNN models are easy-to-use modeling tools for simulating the salinity variation in a tidal estuarine system.
文摘The influenza virus changes its antigenicity frequently due to rapid mutations, leading to immune escape and failure of vaccination. Rapid determination of the influenza antigenicity could help identify the antigenic variants in time. Here, we built a stacked auto-encoder (SAE) model for predicting the antigenic variant of human influenza A(H3N2) viruses based on the hemagglutinin (HA) protein sequences. The model achieved an accuracy of 0.95 in five-fold cross-validations, better than the logistic regression model did. Further analysis of the model shows that most of the active nodes in the hidden layer reflected the combined contribution of multiple residues to antigenic variation. Besides, some features (residues on HA protein) in the input layer were observed to take part in multiple active nodes, such as residue 189, 145 and 156, which were also reported to mostly determine the antigenic variation of influenza A(H3N2) viruses. Overall,this work is not only useful for rapidly identifying antigenic variants in influenza prevention, but also an interesting attempt in inferring the mechanisms of biological process through analysis of SAE model, which may give some insights into interpretation of the deep learning
基金supported by the National Science Foundation for Young Scientists of China(Grant No.61806060)2019-2021,the Basic and Applied Basic Research Foundation of Guangdong Province(2021A1515220140)the Youth Innovation Project of Sun Yat-sen University Cancer Center(QNYCPY32).
文摘In recent years,radiotherapy based only on Magnetic Resonance(MR)images has become a hot spot for radiotherapy planning research in the current medical field.However,functional computed tomography(CT)is still needed for dose calculation in the clinic.Recent deep-learning approaches to synthesized CT images from MR images have raised much research interest,making radiotherapy based only on MR images possible.In this paper,we proposed a novel unsupervised image synthesis framework with registration networks.This paper aims to enforce the constraints between the reconstructed image and the input image by registering the reconstructed image with the input image and registering the cycle-consistent image with the input image.Furthermore,this paper added ConvNeXt blocks to the network and used large kernel convolutional layers to improve the network’s ability to extract features.This research used the collected head and neck data of 180 patients with nasopharyngeal carcinoma to experiment and evaluate the training model with four evaluation metrics.At the same time,this research made a quantitative comparison of several commonly used model frameworks.We evaluate the model performance in four evaluation metrics which achieve Mean Absolute Error(MAE),Root Mean Square Error(RMSE),Peak Signal-to-Noise Ratio(PSNR),and Structural Similarity(SSIM)are 18.55±1.44,86.91±4.31,33.45±0.74 and 0.960±0.005,respectively.Compared with other methods,MAE decreased by 2.17,RMSE decreased by 7.82,PSNR increased by 0.76,and SSIM increased by 0.011.The results show that the model proposed in this paper outperforms other methods in the quality of image synthesis.The work in this paper is of guiding significance to the study of MR-only radiotherapy planning.
文摘In network settings,one of the major disadvantages that threaten the network protocols is the insecurity.In most cases,unscrupulous people or bad actors can access information through unsecured connections by planting software or what we call malicious software otherwise anomalies.The presence of anomalies is also one of the disadvantages,internet users are constantly plagued by virus on their system and get activated when a harmless link is clicked on,this a case of true benign detected as false.Deep learning is very adept at dealing with such cases,but sometimes it has its own faults when dealing benign cases.Here we tend to adopt a dynamic control system(DCSYS)that addresses data packets based on benign scenario to truly report on false benign and exclude anomalies.Its performance is compared with artificial neural network auto-encoders to define its predictive power.Results show that though physical systems can adapt securely,it can be used for network data packets to identify true benign cases.
文摘A variation-aware task mapping approach is proposed for a multi-core network-on-chips with redundant cores, which includes both the design-time mapping and run-time scheduling algorithms. Firstly, a design-time genetic task mapping algorithm is proposed during the design stage to generate multiple task mapping solutions which cover a maximum range of chips. Then, during the run, one optimal task mapping solution is selected. Additionally, logical cores are mapped to physically available cores. Both core asymmetry and topological changes are considered in the proposed approach. Experimental results show that the performance yield of the proposed approach is 96% on average, and the communication cost, power consumption and peak temperature are all optimized without loss of performance yield.
文摘In recent years,computer visionfinds wide applications in maritime surveillance with its sophisticated algorithms and advanced architecture.Auto-matic ship detection with computer vision techniques provide an efficient means to monitor as well as track ships in water bodies.Waterways being an important medium of transport require continuous monitoring for protection of national security.The remote sensing satellite images of ships in harbours and water bodies are the image data that aid the neural network models to localize ships and to facilitate early identification of possible threats at sea.This paper proposes a deep learning based model capable enough to classify between ships and no-ships as well as to localize ships in the original images using bounding box tech-nique.Furthermore,classified ships are again segmented with deep learning based auto-encoder model.The proposed model,in terms of classification,provides suc-cessful results generating 99.5%and 99.2%validation and training accuracy respectively.The auto-encoder model also produces 85.1%and 84.2%validation and training accuracies.Moreover the IoU metric of the segmented images is found to be of 0.77 value.The experimental results reveal that the model is accu-rate and can be implemented for automatic ship detection in water bodies consid-ering remote sensing satellite images as input to the computer vision system.
基金supported by the National Natural Science Foundation of China(Grant No.62076042)the National Key Research and Development Plan of China,Key Project of Cyberspace Security Governance(Grant No.2022YFB3103103)the Key Research and Development Project of Sichuan Province(Grant Nos.2022YFS0571,2021YFSY0012,2021YFG0332,and 2020YFG0307)。
文摘Backdoor attacks are emerging security threats to deep neural networks.In these attacks,adversaries manipulate the network by constructing training samples embedded with backdoor triggers.The backdoored model performs as expected on clean test samples but consistently misclassifies samples containing the backdoor trigger as a specific target label.While quantum neural networks(QNNs)have shown promise in surpassing their classical counterparts in certain machine learning tasks,they are also susceptible to backdoor attacks.However,current attacks on QNNs are constrained by the adversary's understanding of the model structure and specific encoding methods.Given the diversity of encoding methods and model structures in QNNs,the effectiveness of such backdoor attacks remains uncertain.In this paper,we propose an algorithm that leverages dataset-based optimization to initiate backdoor attacks.A malicious adversary can embed backdoor triggers into a QNN model by poisoning only a small portion of the data.The victim QNN maintains high accuracy on clean test samples without the trigger but outputs the target label set by the adversary when predicting samples with the trigger.Furthermore,our proposed attack cannot be easily resisted by existing backdoor detection methods.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2021R1A2C2011391)was supported by the Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2021-0-01806Development of security by design and security management technology in smart factory).
文摘Contemporary attackers,mainly motivated by financial gain,consistently devise sophisticated penetration techniques to access important information or data.The growing use of Internet of Things(IoT)technology in the contemporary convergence environment to connect to corporate networks and cloud-based applications only worsens this situation,as it facilitates multiple new attack vectors to emerge effortlessly.As such,existing intrusion detection systems suffer from performance degradation mainly because of insufficient considerations and poorly modeled detection systems.To address this problem,we designed a blended threat detection approach,considering the possible impact and dimensionality of new attack surfaces due to the aforementioned convergence.We collectively refer to the convergence of different technology sectors as the internet of blended environment.The proposed approach encompasses an ensemble of heterogeneous probabilistic autoencoders that leverage the corresponding advantages of a convolutional variational autoencoder and long short-term memory variational autoencoder.An extensive experimental analysis conducted on the TON_IoT dataset demonstrated 96.02%detection accuracy.Furthermore,performance of the proposed approach was compared with various single model(autoencoder)-based network intrusion detection approaches:autoencoder,variational autoencoder,convolutional variational autoencoder,and long short-term memory variational autoencoder.The proposed model outperformed all compared models,demonstrating F1-score improvements of 4.99%,2.25%,1.92%,and 3.69%,respectively.