Single nucletide polymorphism(SNP)is an important factor for the study of genetic variation in human families and animal and plant strains.Therefore,it is widely used in the study of population genetics and disease re...Single nucletide polymorphism(SNP)is an important factor for the study of genetic variation in human families and animal and plant strains.Therefore,it is widely used in the study of population genetics and disease related gene.In pharmacogenomics research,identifying the association between SNP site and drug is the key to clinical precision medication,therefore,a predictive model of SNP site and drug association based on denoising variational auto-encoder(DVAE-SVM)is proposed.Firstly,k-mer algorithm is used to construct the initial SNP site feature vector,meanwhile,MACCS molecular fingerprint is introduced to generate the feature vector of the drug module.Then,we use the DVAE to extract the effective features of the initial feature vector of the SNP site.Finally,the effective feature vector of the SNP site and the feature vector of the drug module are fused input to the support vector machines(SVM)to predict the relationship of SNP site and drug module.The results of five-fold cross-validation experiments indicate that the proposed algorithm performs better than random forest(RF)and logistic regression(LR)classification.Further experiments show that compared with the feature extraction algorithms of principal component analysis(PCA),denoising auto-encoder(DAE)and variational auto-encode(VAE),the proposed algorithm has better prediction results.展开更多
The existing graph convolution methods usually suffer high computational burdens,large memory requirements,and intractable batch-processing.In this paper,we propose a high-efficient variational gridded graph convoluti...The existing graph convolution methods usually suffer high computational burdens,large memory requirements,and intractable batch-processing.In this paper,we propose a high-efficient variational gridded graph convolution network(VG-GCN)to encode non-regular graph data,which overcomes all these aforementioned problems.To capture graph topology structures efficiently,in the proposed framework,we propose a hierarchically-coarsened random walk(hcr-walk)by taking advantage of the classic random walk and node/edge encapsulation.The hcr-walk greatly mitigates the problem of exponentially explosive sampling times which occur in the classic version,while preserving graph structures well.To efficiently encode local hcr-walk around one reference node,we project hcrwalk into an ordered space to form image-like grid data,which favors those conventional convolution networks.Instead of the direct 2-D convolution filtering,a variational convolution block(VCB)is designed to model the distribution of the randomsampling hcr-walk inspired by the well-formulated variational inference.We experimentally validate the efficiency and effectiveness of our proposed VG-GCN,which has high computation speed,and the comparable or even better performance when compared with baseline GCNs.展开更多
Generative AI models for music and the arts in general are increasingly complex and hard to understand.The field of ex-plainable AI(XAI)seeks to make complex and opaque AI models such as neural networks more understan...Generative AI models for music and the arts in general are increasingly complex and hard to understand.The field of ex-plainable AI(XAI)seeks to make complex and opaque AI models such as neural networks more understandable to people.One ap-proach to making generative AI models more understandable is to impose a small number of semantically meaningful attributes on gen-erative AI models.This paper contributes a systematic examination of the impact that different combinations of variational auto-en-coder models(measureVAE and adversarialVAE),configurations of latent space in the AI model(from 4 to 256 latent dimensions),and training datasets(Irish folk,Turkish folk,classical,and pop)have on music generation performance when 2 or 4 meaningful musical at-tributes are imposed on the generative model.To date,there have been no systematic comparisons of such models at this level of com-binatorial detail.Our findings show that measureVAE has better reconstruction performance than adversarialVAE which has better musical attribute independence.Results demonstrate that measureVAE was able to generate music across music genres with inter-pretable musical dimensions of control,and performs best with low complexity music such as pop and rock.We recommend that a 32 or 64 latent dimensional space is optimal for 4 regularised dimensions when using measureVAE to generate music across genres.Our res-ults are the first detailed comparisons of configurations of state-of-the-art generative AI models for music and can be used to help select and configure AI models,musical features,and datasets for more understandable generation of music.展开更多
Real-time 6 Degree-of-Freedom(DoF)pose estimation is of paramount importance for various on-orbit tasks.Benefiting from the development of deep learning,Convolutional Neural Networks(CNNs)in feature extraction has yie...Real-time 6 Degree-of-Freedom(DoF)pose estimation is of paramount importance for various on-orbit tasks.Benefiting from the development of deep learning,Convolutional Neural Networks(CNNs)in feature extraction has yielded impressive achievements for spacecraft pose estimation.To improve the robustness and interpretability of CNNs,this paper proposes a Pose Estimation approach based on Variational Auto-Encoder structure(PE-VAE)and a Feature-Aided pose estimation approach based on Variational Auto-Encoder structure(FA-VAE),which aim to accurately estimate the 6 DoF pose of a target spacecraft.Both methods treat the pose vector as latent variables,employing an encoder-decoder network with a Variational Auto-Encoder(VAE)structure.To enhance the precision of pose estimation,PE-VAE uses the VAE structure to introduce reconstruction mechanism with the whole image.Furthermore,FA-VAE enforces feature shape constraints by exclusively reconstructing the segment of the target spacecraft with the desired shape.Comparative evaluation against leading methods on public datasets reveals similar accuracy with a threefold improvement in processing speed,showcasing the significant contribution of VAE structures to accuracy enhancement,and the additional benefit of incorporating global shape prior features.展开更多
Exposure to poor indoor air conditions poses significant risks to human health, increasing morbidity and mortality rates. Soft measurement modeling is suitable for stable and accurate monitoring of air pollutants and ...Exposure to poor indoor air conditions poses significant risks to human health, increasing morbidity and mortality rates. Soft measurement modeling is suitable for stable and accurate monitoring of air pollutants and improving air quality. Based on partial least squares (PLS), we propose an indoor air quality prediction model that utilizes variational auto-encoder regression (VAER) algorithm. To reduce the negative effects of noise, latent variables in the original data are extracted by PLS in the first step. Then, the extracted variables are used as inputs to VAER, which improve the accuracy and robustness of the model. Through comparative analysis with traditional methods, we demonstrate the superior performance of our PLS-VAER model, which exhibits improved prediction performance and stability. The root mean square error (RMSE) of PLS-VAER is reduced by 14.71%, 26.47%, and 12.50% compared to single VAER, PLS-SVR, and PLS-ANN, respectively. Additionally, the coefficient of determination (R2) of PLS-VAER improves by 13.70%, 30.09%, and 11.25% compared to single VAER, PLS-SVR, and PLS-ANN, respectively. This research offers an innovative and environmentally-friendly approach to monitor and improve indoor air quality.展开更多
The undirected graph to express engineering drawings is discussed .The principle to re-solve and reason the undirected graph is presented, and the algorithm finally transforms theundirected graph into the resolvable d...The undirected graph to express engineering drawings is discussed .The principle to re-solve and reason the undirected graph is presented, and the algorithm finally transforms theundirected graph into the resolvable directed graph. Therefore,a rapid and simple way is suppliedfor variational design. A prototype of this algorithm has been implemented, and some examplesare given.展开更多
In this paper,we study a distributed model to cooperatively compute variational inequalities over time-varying directed graphs.Here,each agent has access to a part of the full mapping and holds a local view of the glo...In this paper,we study a distributed model to cooperatively compute variational inequalities over time-varying directed graphs.Here,each agent has access to a part of the full mapping and holds a local view of the global set constraint.By virtue of an auxiliary vector to compensate the graph imbalance,we propose a consensus-based distributed projection algorithm relying on local computation and communication at each agent.We show the convergence of this algorithm over uniformly jointly strongly connected unbalanced digraphs with nonidentical local constraints.We also provide a numerical example to illustrate the effectiveness of our algorithm.展开更多
The influenza virus changes its antigenicity frequently due to rapid mutations, leading to immune escape and failure of vaccination. Rapid determination of the influenza antigenicity could help identify the antigenic ...The influenza virus changes its antigenicity frequently due to rapid mutations, leading to immune escape and failure of vaccination. Rapid determination of the influenza antigenicity could help identify the antigenic variants in time. Here, we built a stacked auto-encoder (SAE) model for predicting the antigenic variant of human influenza A(H3N2) viruses based on the hemagglutinin (HA) protein sequences. The model achieved an accuracy of 0.95 in five-fold cross-validations, better than the logistic regression model did. Further analysis of the model shows that most of the active nodes in the hidden layer reflected the combined contribution of multiple residues to antigenic variation. Besides, some features (residues on HA protein) in the input layer were observed to take part in multiple active nodes, such as residue 189, 145 and 156, which were also reported to mostly determine the antigenic variation of influenza A(H3N2) viruses. Overall,this work is not only useful for rapidly identifying antigenic variants in influenza prevention, but also an interesting attempt in inferring the mechanisms of biological process through analysis of SAE model, which may give some insights into interpretation of the deep learning展开更多
针对图表示学习模型依赖具体任务进行特征保留以及节点表示的泛化性有限等问题,本文提出一种基于自监督信息增强的图表示学习模型(Self-Variational Graph Auto Encoder,Self-VGAE)。Self-VGAE首先使用图卷积编码器和节点表示内积解码...针对图表示学习模型依赖具体任务进行特征保留以及节点表示的泛化性有限等问题,本文提出一种基于自监督信息增强的图表示学习模型(Self-Variational Graph Auto Encoder,Self-VGAE)。Self-VGAE首先使用图卷积编码器和节点表示内积解码器构建变分图自编码器(Variational Graph Auto Encoder,VGAE),并对原始图进行特征提取和编码;然后,使用拓扑结构和节点属性生成自监督信息,在模型训练过程中约束节点表示的生成。在多个图分析任务中,Self-VGAE的实验表现均优于当前较为先进的基线模型,表明引入自监督信息能够增强对节点特征相似性和差异性的保留能力以及对拓扑结构的保持、推断能力,并且Self-VGAE具有较强的泛化能力。展开更多
Non-intrusive load monitoring is a technique for monitoring the operating conditions of electrical appliances by collecting the aggregated electrical information at the household power inlet.Despite several studies on...Non-intrusive load monitoring is a technique for monitoring the operating conditions of electrical appliances by collecting the aggregated electrical information at the household power inlet.Despite several studies on the mining of unique load characteristics,few studies have extensively considered the high computational burden and sample training.Based on lowfrequency sampling data,a non-intrusive load monitoring algorithm utilizing the graph total variation(GTV)is proposed in this study.The algorithm can effectively depict the load state without the need for prior training.First,the combined Kmeans clustering algorithm and graph signals are used to build concise and accurate graph structures as load models.The GTV representing the internal structure of the graph signal is introduced as the optimization model and solved using the augmented Lagrangian iterative algorithm.The introduction of the difference operator reduces the computing cost and addresses the inaccurate reconstruction of the graph signal.With low-frequency sampling data,the algorithm only requires a little prior data and no training,thereby reducing the computing cost.Experiments conducted using the reference energy disaggregation dataset and almanac of minutely power dataset demonstrated the stable superiority of the algorithm and its low computational burden.展开更多
基金Lanzhou Talent Innovation and Entrepreneurship Project(No.2020-RC-14)。
文摘Single nucletide polymorphism(SNP)is an important factor for the study of genetic variation in human families and animal and plant strains.Therefore,it is widely used in the study of population genetics and disease related gene.In pharmacogenomics research,identifying the association between SNP site and drug is the key to clinical precision medication,therefore,a predictive model of SNP site and drug association based on denoising variational auto-encoder(DVAE-SVM)is proposed.Firstly,k-mer algorithm is used to construct the initial SNP site feature vector,meanwhile,MACCS molecular fingerprint is introduced to generate the feature vector of the drug module.Then,we use the DVAE to extract the effective features of the initial feature vector of the SNP site.Finally,the effective feature vector of the SNP site and the feature vector of the drug module are fused input to the support vector machines(SVM)to predict the relationship of SNP site and drug module.The results of five-fold cross-validation experiments indicate that the proposed algorithm performs better than random forest(RF)and logistic regression(LR)classification.Further experiments show that compared with the feature extraction algorithms of principal component analysis(PCA),denoising auto-encoder(DAE)and variational auto-encode(VAE),the proposed algorithm has better prediction results.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20190019,BK20190452)the National Natural Science Foundation of China(62072244,61906094)the Natural Science Foundation of Shandong Province(ZR2020LZH008)。
文摘The existing graph convolution methods usually suffer high computational burdens,large memory requirements,and intractable batch-processing.In this paper,we propose a high-efficient variational gridded graph convolution network(VG-GCN)to encode non-regular graph data,which overcomes all these aforementioned problems.To capture graph topology structures efficiently,in the proposed framework,we propose a hierarchically-coarsened random walk(hcr-walk)by taking advantage of the classic random walk and node/edge encapsulation.The hcr-walk greatly mitigates the problem of exponentially explosive sampling times which occur in the classic version,while preserving graph structures well.To efficiently encode local hcr-walk around one reference node,we project hcrwalk into an ordered space to form image-like grid data,which favors those conventional convolution networks.Instead of the direct 2-D convolution filtering,a variational convolution block(VCB)is designed to model the distribution of the randomsampling hcr-walk inspired by the well-formulated variational inference.We experimentally validate the efficiency and effectiveness of our proposed VG-GCN,which has high computation speed,and the comparable or even better performance when compared with baseline GCNs.
文摘Generative AI models for music and the arts in general are increasingly complex and hard to understand.The field of ex-plainable AI(XAI)seeks to make complex and opaque AI models such as neural networks more understandable to people.One ap-proach to making generative AI models more understandable is to impose a small number of semantically meaningful attributes on gen-erative AI models.This paper contributes a systematic examination of the impact that different combinations of variational auto-en-coder models(measureVAE and adversarialVAE),configurations of latent space in the AI model(from 4 to 256 latent dimensions),and training datasets(Irish folk,Turkish folk,classical,and pop)have on music generation performance when 2 or 4 meaningful musical at-tributes are imposed on the generative model.To date,there have been no systematic comparisons of such models at this level of com-binatorial detail.Our findings show that measureVAE has better reconstruction performance than adversarialVAE which has better musical attribute independence.Results demonstrate that measureVAE was able to generate music across music genres with inter-pretable musical dimensions of control,and performs best with low complexity music such as pop and rock.We recommend that a 32 or 64 latent dimensional space is optimal for 4 regularised dimensions when using measureVAE to generate music across genres.Our res-ults are the first detailed comparisons of configurations of state-of-the-art generative AI models for music and can be used to help select and configure AI models,musical features,and datasets for more understandable generation of music.
基金supported by the National Natural Science Foundation of China(No.52272390)the Natural Science Foundation of Heilongjiang Province of China(No.YQ2022A009)the Shanghai Sailing Program,China(No.20YF1417300).
文摘Real-time 6 Degree-of-Freedom(DoF)pose estimation is of paramount importance for various on-orbit tasks.Benefiting from the development of deep learning,Convolutional Neural Networks(CNNs)in feature extraction has yielded impressive achievements for spacecraft pose estimation.To improve the robustness and interpretability of CNNs,this paper proposes a Pose Estimation approach based on Variational Auto-Encoder structure(PE-VAE)and a Feature-Aided pose estimation approach based on Variational Auto-Encoder structure(FA-VAE),which aim to accurately estimate the 6 DoF pose of a target spacecraft.Both methods treat the pose vector as latent variables,employing an encoder-decoder network with a Variational Auto-Encoder(VAE)structure.To enhance the precision of pose estimation,PE-VAE uses the VAE structure to introduce reconstruction mechanism with the whole image.Furthermore,FA-VAE enforces feature shape constraints by exclusively reconstructing the segment of the target spacecraft with the desired shape.Comparative evaluation against leading methods on public datasets reveals similar accuracy with a threefold improvement in processing speed,showcasing the significant contribution of VAE structures to accuracy enhancement,and the additional benefit of incorporating global shape prior features.
基金supported by the Opening Project of Guangxi Key Laboratory of Clean Pulp&Papermaking and Pollution Control,China(No.2021KF11)the Shandong Provincial Natural Science Foundation,China(No.ZR2021MF135)+1 种基金the National Natural Science Foundation of China(No.52170001)the Natural Science Foundation of Jiangsu Provincial Universities,China(No.22KJA530003).
文摘Exposure to poor indoor air conditions poses significant risks to human health, increasing morbidity and mortality rates. Soft measurement modeling is suitable for stable and accurate monitoring of air pollutants and improving air quality. Based on partial least squares (PLS), we propose an indoor air quality prediction model that utilizes variational auto-encoder regression (VAER) algorithm. To reduce the negative effects of noise, latent variables in the original data are extracted by PLS in the first step. Then, the extracted variables are used as inputs to VAER, which improve the accuracy and robustness of the model. Through comparative analysis with traditional methods, we demonstrate the superior performance of our PLS-VAER model, which exhibits improved prediction performance and stability. The root mean square error (RMSE) of PLS-VAER is reduced by 14.71%, 26.47%, and 12.50% compared to single VAER, PLS-SVR, and PLS-ANN, respectively. Additionally, the coefficient of determination (R2) of PLS-VAER improves by 13.70%, 30.09%, and 11.25% compared to single VAER, PLS-SVR, and PLS-ANN, respectively. This research offers an innovative and environmentally-friendly approach to monitor and improve indoor air quality.
文摘The undirected graph to express engineering drawings is discussed .The principle to re-solve and reason the undirected graph is presented, and the algorithm finally transforms theundirected graph into the resolvable directed graph. Therefore,a rapid and simple way is suppliedfor variational design. A prototype of this algorithm has been implemented, and some examplesare given.
基金supported by the National Natural Science Foundation of China(No.61973043)Shanghai Municipal Science and Technology Major Project(No.2021SHZDZX0100).
文摘In this paper,we study a distributed model to cooperatively compute variational inequalities over time-varying directed graphs.Here,each agent has access to a part of the full mapping and holds a local view of the global set constraint.By virtue of an auxiliary vector to compensate the graph imbalance,we propose a consensus-based distributed projection algorithm relying on local computation and communication at each agent.We show the convergence of this algorithm over uniformly jointly strongly connected unbalanced digraphs with nonidentical local constraints.We also provide a numerical example to illustrate the effectiveness of our algorithm.
文摘The influenza virus changes its antigenicity frequently due to rapid mutations, leading to immune escape and failure of vaccination. Rapid determination of the influenza antigenicity could help identify the antigenic variants in time. Here, we built a stacked auto-encoder (SAE) model for predicting the antigenic variant of human influenza A(H3N2) viruses based on the hemagglutinin (HA) protein sequences. The model achieved an accuracy of 0.95 in five-fold cross-validations, better than the logistic regression model did. Further analysis of the model shows that most of the active nodes in the hidden layer reflected the combined contribution of multiple residues to antigenic variation. Besides, some features (residues on HA protein) in the input layer were observed to take part in multiple active nodes, such as residue 189, 145 and 156, which were also reported to mostly determine the antigenic variation of influenza A(H3N2) viruses. Overall,this work is not only useful for rapidly identifying antigenic variants in influenza prevention, but also an interesting attempt in inferring the mechanisms of biological process through analysis of SAE model, which may give some insights into interpretation of the deep learning
文摘针对图表示学习模型依赖具体任务进行特征保留以及节点表示的泛化性有限等问题,本文提出一种基于自监督信息增强的图表示学习模型(Self-Variational Graph Auto Encoder,Self-VGAE)。Self-VGAE首先使用图卷积编码器和节点表示内积解码器构建变分图自编码器(Variational Graph Auto Encoder,VGAE),并对原始图进行特征提取和编码;然后,使用拓扑结构和节点属性生成自监督信息,在模型训练过程中约束节点表示的生成。在多个图分析任务中,Self-VGAE的实验表现均优于当前较为先进的基线模型,表明引入自监督信息能够增强对节点特征相似性和差异性的保留能力以及对拓扑结构的保持、推断能力,并且Self-VGAE具有较强的泛化能力。
基金supported by National Natural Science Foundation of China(No.52107117)。
文摘Non-intrusive load monitoring is a technique for monitoring the operating conditions of electrical appliances by collecting the aggregated electrical information at the household power inlet.Despite several studies on the mining of unique load characteristics,few studies have extensively considered the high computational burden and sample training.Based on lowfrequency sampling data,a non-intrusive load monitoring algorithm utilizing the graph total variation(GTV)is proposed in this study.The algorithm can effectively depict the load state without the need for prior training.First,the combined Kmeans clustering algorithm and graph signals are used to build concise and accurate graph structures as load models.The GTV representing the internal structure of the graph signal is introduced as the optimization model and solved using the augmented Lagrangian iterative algorithm.The introduction of the difference operator reduces the computing cost and addresses the inaccurate reconstruction of the graph signal.With low-frequency sampling data,the algorithm only requires a little prior data and no training,thereby reducing the computing cost.Experiments conducted using the reference energy disaggregation dataset and almanac of minutely power dataset demonstrated the stable superiority of the algorithm and its low computational burden.