期刊文献+
共找到175篇文章
< 1 2 9 >
每页显示 20 50 100
Variational Neural Inference Enhanced Text Semantic Communication System
1
作者 Zhang Xi Zhang Yiqian +1 位作者 Li Congduan Ma Xiao 《China Communications》 SCIE CSCD 2024年第7期50-64,共15页
Recently,deep learning-based semantic communication has garnered widespread attention,with numerous systems designed for transmitting diverse data sources,including text,image,and speech,etc.While efforts have been di... Recently,deep learning-based semantic communication has garnered widespread attention,with numerous systems designed for transmitting diverse data sources,including text,image,and speech,etc.While efforts have been directed toward improving system performance,many studies have concentrated on enhancing the structure of the encoder and decoder.However,this often overlooks the resulting increase in model complexity,imposing additional storage and computational burdens on smart devices.Furthermore,existing work tends to prioritize explicit semantics,neglecting the potential of implicit semantics.This paper aims to easily and effectively enhance the receiver's decoding capability without modifying the encoder and decoder structures.We propose a novel semantic communication system with variational neural inference for text transmission.Specifically,we introduce a simple but effective variational neural inferer at the receiver to infer the latent semantic information within the received text.This information is then utilized to assist in the decoding process.The simulation results show a significant enhancement in system performance and improved robustness. 展开更多
关键词 deep learning semantic communication variational neural inference
下载PDF
Variational Inference Based Kernel Dynamic Bayesian Networks for Construction of Prediction Intervals for Industrial Time Series With Incomplete Input 被引量:2
2
作者 Long Chen Linqing Wang +2 位作者 Zhongyang Han Jun Zhao Wei Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第5期1437-1445,共9页
Prediction intervals(PIs)for industrial time series can provide useful guidance for workers.Given that the failure of industrial sensors may cause the missing point in inputs,the existing kernel dynamic Bayesian netwo... Prediction intervals(PIs)for industrial time series can provide useful guidance for workers.Given that the failure of industrial sensors may cause the missing point in inputs,the existing kernel dynamic Bayesian networks(KDBN),serving as an effective method for PIs construction,suffer from high computational load using the stochastic algorithm for inference.This study proposes a variational inference method for the KDBN for the purpose of fast inference,which avoids the timeconsuming stochastic sampling.The proposed algorithm contains two stages.The first stage involves the inference of the missing inputs by using a local linearization based variational inference,and based on the computed posterior distributions over the missing inputs the second stage sees a Gaussian approximation for probability over the nodes in future time slices.To verify the effectiveness of the proposed method,a synthetic dataset and a practical dataset of generation flow of blast furnace gas(BFG)are employed with different ratios of missing inputs.The experimental results indicate that the proposed method can provide reliable PIs for the generation flow of BFG and it exhibits shorter computing time than the stochastic based one. 展开更多
关键词 Industrial time series kernel dynamic Bayesian networks(KDBN) prediction intervals(PIs) variational inference
下载PDF
Skew t Distribution-Based Nonlinear Filter with Asymmetric Measurement Noise Using Variational Bayesian Inference 被引量:1
3
作者 Chen Xu Yawen Mao +2 位作者 Hongtian Chen Hongfeng Tao Fei Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第4期349-364,共16页
This paper is focused on the state estimation problem for nonlinear systems with unknown statistics of measurement noise.Based on the cubature Kalman filter,we propose a new nonlinear filtering algorithm that employs ... This paper is focused on the state estimation problem for nonlinear systems with unknown statistics of measurement noise.Based on the cubature Kalman filter,we propose a new nonlinear filtering algorithm that employs a skew t distribution to characterize the asymmetry of the measurement noise.The system states and the statistics of skew t noise distribution,including the shape matrix,the scale matrix,and the degree of freedom(DOF)are estimated jointly by employing variational Bayesian(VB)inference.The proposed method is validated in a target tracking example.Results of the simulation indicate that the proposed nonlinear filter can perform satisfactorily in the presence of unknown statistics of measurement noise and outperform than the existing state-of-the-art nonlinear filters. 展开更多
关键词 Nonlinear filter asymmetric measurement noise skew t distribution unknown noise statistics variational Bayesian inference
下载PDF
Gridless Variational Bayesian Inference of Line Spectral from Quantized Samples
4
作者 Jiang Zhu Qi Zhang Xiangming Meng 《China Communications》 SCIE CSCD 2021年第10期77-95,共19页
Efficient estimation of line spectral from quantized samples is of significant importance in information theory and signal processing,e.g.,channel estimation in energy efficient massive MIMO systems and direction of a... Efficient estimation of line spectral from quantized samples is of significant importance in information theory and signal processing,e.g.,channel estimation in energy efficient massive MIMO systems and direction of arrival estimation.The goal of this paper is to recover the line spectral as well as its corresponding parameters including the model order,frequencies and amplitudes from heavily quantized samples.To this end,we propose an efficient gridless Bayesian algorithm named VALSE-EP,which is a combination of the high resolution and low complexity gridless variational line spectral estimation(VALSE)and expectation propagation(EP).The basic idea of VALSE-EP is to iteratively approximate the challenging quantized model of line spectral estimation as a sequence of simple pseudo unquantized models,where VALSE is applied.Moreover,to obtain a benchmark of the performance of the proposed algorithm,the Cram′er Rao bound(CRB)is derived.Finally,numerical experiments on both synthetic and real data are performed,demonstrating the near CRB performance of the proposed VALSE-EP for line spectral estimation from quantized samples. 展开更多
关键词 variational Bayesian inference expectation propagation QUANTIZATION line spectral estimation MMSE gridless
下载PDF
Adaptive cubature Kalman filter based on variational Bayesian inference under measurement uncertainty
5
作者 HU Zhentao JIA Haoqian GONG Delong 《High Technology Letters》 EI CAS 2022年第4期354-362,共9页
A novel variational Bayesian inference based on adaptive cubature Kalman filter(VBACKF)algorithm is proposed for the problem of state estimation in a target tracking system with time-varying measurement noise and rand... A novel variational Bayesian inference based on adaptive cubature Kalman filter(VBACKF)algorithm is proposed for the problem of state estimation in a target tracking system with time-varying measurement noise and random measurement losses.Firstly,the Inverse-Wishart(IW)distribution is chosen to model the covariance matrix of time-varying measurement noise in the cubature Kalman filter framework.Secondly,the Bernoulli random variable is introduced as the judgement factor of the measurement losses,and the Beta distribution is selected as the conjugate prior distribution of measurement loss probability to ensure that the posterior distribution and prior distribution have the same function form.Finally,the joint posterior probability density function of the estimated variables is approximately decoupled by the variational Bayesian inference,and the fixed-point iteration approach is used to update the estimated variables.The simulation results show that the proposed VBACKF algorithm considers the comprehensive effects of system nonlinearity,time-varying measurement noise and unknown measurement loss probability,moreover,effectively improves the accuracy of target state estimation in complex scene. 展开更多
关键词 variational Bayesian inference cubature Kalman filter(CKF) measurement uncertainty Inverse-Wishart(IW)distribution
下载PDF
Gaussian-Student's t mixture distribution PHD robust filtering algorithm based on variational Bayesian inference
6
作者 HU Zhentao YANG Linlin +1 位作者 HU Yumei YANG Shibo 《High Technology Letters》 EI CAS 2022年第2期181-189,共9页
Aiming at the problem of filtering precision degradation caused by the random outliers of process noise and measurement noise in multi-target tracking(MTT) system,a new Gaussian-Student’s t mixture distribution proba... Aiming at the problem of filtering precision degradation caused by the random outliers of process noise and measurement noise in multi-target tracking(MTT) system,a new Gaussian-Student’s t mixture distribution probability hypothesis density(PHD) robust filtering algorithm based on variational Bayesian inference(GST-vbPHD) is proposed.Firstly,since it can accurately describe the heavy-tailed characteristics of noise with outliers,Gaussian-Student’s t mixture distribution is employed to model process noise and measurement noise respectively.Then Bernoulli random variable is introduced to correct the likelihood distribution of the mixture probability,leading hierarchical Gaussian distribution constructed by the Gaussian-Student’s t mixture distribution suitable to model non-stationary noise.Finally,the approximate solutions including target weights,measurement noise covariance and state estimation error covariance are obtained according to variational Bayesian inference approach.The simulation results show that,in the heavy-tailed noise environment,the proposed algorithm leads to strong improvements over the traditional PHD filter and the Student’s t distribution PHD filter. 展开更多
关键词 multi-target tracking(MTT) variational Bayesian inference Gaussian-Student’s t mixture distribution heavy-tailed noise
下载PDF
基于条件变分推断与内省对抗学习的多样化图像描述生成
7
作者 刘兵 李穗 +1 位作者 刘明明 刘浩 《电子学报》 EI CAS CSCD 北大核心 2024年第7期2219-2227,共9页
现有多样化图像描述生成方法受到隐空间表示能力和评价指标制约,很难同时兼顾描述生成的多样性和准确性.为此,本文提出了一种新的多样化图像描述生成模型,该模型由一个条件变分推断编码器和一个生成器组成.编码器利用全局注意力学习每... 现有多样化图像描述生成方法受到隐空间表示能力和评价指标制约,很难同时兼顾描述生成的多样性和准确性.为此,本文提出了一种新的多样化图像描述生成模型,该模型由一个条件变分推断编码器和一个生成器组成.编码器利用全局注意力学习每个单词的隐向量空间,以提升模型对描述多样化的建模能力.生成器根据给定图像和序列隐向量生成多样化的描述语句.同时,引入内省对抗学习的思想,条件变分推断编码器同时作为鉴别器来区分真实描述和生成的描述,赋予模型自我评价生成的描述语句的能力,克服预定义评价指标的局限性.在MSCOCO数据集上的实验表明,与传统方法相比,在随机生成100个描述语句时,多样性指标mBLEU(mutual overlap-BiLingual Evaluation Understudy)提升了1.9%,同时准确性指标CIDEr(Consensus-based Image Description Evaluation)显著提升了7.5%.与典型多模态大模型相比,所提出方法在较小参数量的条件下更适用于生成多样化的陈述性描述语句. 展开更多
关键词 图像描述 变分推断 对抗学习 隐嵌入 多模态学习 生成模型
下载PDF
Copula层次化变分推理
8
作者 欧阳继红 曹竞月 王腾 《吉林大学学报(信息科学版)》 CAS 2024年第1期51-58,共8页
为提高Copula变分推理(CVI:Copula Variational Inference)的近似性能,提出了一种Copula层次化变分推理方法(CHVI:Copula Hierarchical Variational Inference)。该方法的主要思想是将CVI方法中的Copula函数与层次化变分模型(HVM:Hierar... 为提高Copula变分推理(CVI:Copula Variational Inference)的近似性能,提出了一种Copula层次化变分推理方法(CHVI:Copula Hierarchical Variational Inference)。该方法的主要思想是将CVI方法中的Copula函数与层次化变分模型(HVM:Hierarchical Variational Model)特殊的层次变分结构相结合,使HVM的变分先验服从CVI方法中的Copula函数。CHVI不但继承了CVI中的Copula函数较强的捕获变量相关性的能力,而且还继承了HVM的变分先验结构能获取模型隐变量依赖关系的优势,使CHVI可以更好地捕获隐变量之间的相关性,提高近似精度。利用基于经典的高斯混合模型验证CHVI方法,在合成数据集和实际应用数据集上的实验结果表明,CHVI方法的近似精度相较于CVI有较大提升。 展开更多
关键词 变分推理 COPULA函数 层次化 相关性
下载PDF
基于特征蒸馏的变分编码器交通流预测模型
9
作者 欧阳毅 汤文燕 黎晏伶 《电子学报》 EI CAS CSCD 北大核心 2024年第6期1938-1944,共7页
针对交通流数据高维非线性和时空依赖性复杂,本文构建了基于特征蒸馏的变分贝叶斯编码器交通流预测模型.对每段时间序列对应的时间窗口特征,构建了基于多模态时间槽和空间槽的交通流特征提取模型.以时空槽特征提取模型作为特征知识蒸馏... 针对交通流数据高维非线性和时空依赖性复杂,本文构建了基于特征蒸馏的变分贝叶斯编码器交通流预测模型.对每段时间序列对应的时间窗口特征,构建了基于多模态时间槽和空间槽的交通流特征提取模型.以时空槽特征提取模型作为特征知识蒸馏架构的输入.通过知识蒸馏结构提取的时空特征结晶体,利用教师模型指导学生模型的学习过程,从而提高学生模型的泛化能力.变分贝叶斯编码器对交通流时空特征结晶编码获取交通流数据的隐变量,根据隐变量的生成采样,利用解码器将其解码重构成新的预测值.实验结果表明,本文提出的模型预测性能显著提升,且中长期预测中鲁棒性更优. 展开更多
关键词 特征蒸馏 多模态时间槽 空间槽 变分贝叶斯 生成式模型 变分推断
下载PDF
基于局部变分贝叶斯推断的分布式交互式多模型估计
10
作者 胡振涛 杨诗博 侯巍 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第4期681-690,共10页
针对目前部分多模型算法预先设定运动模型转移概率矩阵对状态估计精度的不利影响,本文提出了一种基于局部变分贝叶斯推断的分布式交互式多模型估计算法.不同于传统交互式多模型估计中运动模型转移概率矩阵为先验已知的假设条件,在分布... 针对目前部分多模型算法预先设定运动模型转移概率矩阵对状态估计精度的不利影响,本文提出了一种基于局部变分贝叶斯推断的分布式交互式多模型估计算法.不同于传统交互式多模型估计中运动模型转移概率矩阵为先验已知的假设条件,在分布融合估计框架下,首先基于最小化Kullback-Leibler散度准则的递归优化策略实现对运动模型转移概率矩阵的预测与更新;在此基础上,结合变分贝叶斯推断实现对当前时刻目标状态与模型概率的联合估计;最后依据协方差交叉融合策略完成对局部状态估计融合.仿真结果表明:新算法通过对运动模型转移概率矩阵以及模型概率自适应在线估计,有效提升了机动目标的状态估计精度. 展开更多
关键词 机动目标跟踪 变分贝叶斯推断 模型转移概率矩阵 分布式融合 协方差交叉融合
下载PDF
基于贝叶斯神经网络的多臂测井套损检测方法
11
作者 曹茂俊 吴升坤 《计算机技术与发展》 2024年第8期108-115,共8页
针对传统多臂井径测井套损检测过程中,测井资料人工解释准确性不高,管柱重要信息容易遗漏等问题,结合大庆油田某工区多臂井径测井数据,提出了一种基于贝叶斯神经网络的多臂测井套损检测方法。该方法可在对原始测井曲线方位校正、缺失值... 针对传统多臂井径测井套损检测过程中,测井资料人工解释准确性不高,管柱重要信息容易遗漏等问题,结合大庆油田某工区多臂井径测井数据,提出了一种基于贝叶斯神经网络的多臂测井套损检测方法。该方法可在对原始测井曲线方位校正、缺失值填充以及对常见套损类别进行曲线数据截取汇总的基础上,形成多臂井径数据集,同时对数据集进行归一化处理并以此作为训练数据进行套损检测实验。对比发现,在多臂井径测井套损检测问题上,采用的MC Dropout变分推理方法训练的贝叶斯神经网络,相较BP神经网络、随机森林、BayesByBackprop和SGLD变分推理方法训练的贝叶斯神经网络,在性能和鲁棒性方面表现更优异。实验表明:该方法在多臂测井套损检测中有效性更高,平均准确率达到95.67%,较传统人工解释方法提升明显,并能给出可解释性更佳的分类结果不确定性,极大地提升了衡量检测结果的可信程度。 展开更多
关键词 多臂井径 套损检测 贝叶斯神经网络 变分推理 不确定性
下载PDF
基于条件变分自编码器的熔铸炸药成型缺陷快速模拟和预测
12
作者 滕浩 李锡文 +1 位作者 王学林 胡于进 《火炸药学报》 EI CAS CSCD 北大核心 2024年第7期640-648,I0003,共10页
为了实现凝固缺陷的快速模拟和预测,提出了一种基于条件变分自编码器(CVAE)的熔铸炸药成型缺陷预测模型;以注液温度、冒口预热温度等工艺参数为条件,通过条件变分自编码器建立工艺参数与熔铸炸药缺陷的条件概率模型;采用多层神经网络和... 为了实现凝固缺陷的快速模拟和预测,提出了一种基于条件变分自编码器(CVAE)的熔铸炸药成型缺陷预测模型;以注液温度、冒口预热温度等工艺参数为条件,通过条件变分自编码器建立工艺参数与熔铸炸药缺陷的条件概率模型;采用多层神经网络和变分推断方法结合进行模型训练,实现了RHT和DNP基熔铸炸药凝固成型缺陷预测。结果表明,成功构建了熔铸炸药凝固过程数值模拟的条件概率分布,实现了基于仿真数据的RHT和DNP基熔铸炸药凝固缺陷预测;与有限元直接数值计算结果比较,CVAE算法计算缺陷位置的准确率可达到99%,计算时间小于2 s;CVAE在熔铸炸药缺陷概率分布建模上具有性能高、泛化性强的特点,能有效实现熔铸炸药成型缺陷的智能预测。 展开更多
关键词 条件变分自编码器 CVAE 熔铸炸药 数值模拟 成型缺陷 多层神经网络 变分推断方法
下载PDF
脉冲干扰下基于变分贝叶斯推断的水声正交频分复用联合估计方法
13
作者 葛威 焦桦坤 +2 位作者 佟文涛 生雪莉 韩笑 《声学学报》 EI CAS CSCD 北大核心 2024年第5期1051-1060,共10页
脉冲干扰环境下水声正交频分复用通信性能严重下降,为此提出了基于变分贝叶斯推断的信道估计方法。该方法利用水声信道和脉冲干扰的稀疏特性,基于平均场变分贝叶斯推断,将信道向量和脉冲干扰向量的后验概率分布分别分解为简单概率分布... 脉冲干扰环境下水声正交频分复用通信性能严重下降,为此提出了基于变分贝叶斯推断的信道估计方法。该方法利用水声信道和脉冲干扰的稀疏特性,基于平均场变分贝叶斯推断,将信道向量和脉冲干扰向量的后验概率分布分别分解为简单概率分布进行拟合,基于导频子载波迭代直至收敛,得到信道和脉冲干扰的最大后验估计。所提方法改进了基于稀疏贝叶斯学习的干扰、信道联合估计方法中信道和干扰构成的联合向量无法分离二者稀疏度的问题,并且显著降低了计算复杂度。在此基础上,进一步提出了基于变分贝叶斯推断的干扰、信道和符号联合估计方法,将未知符号融入变分贝叶斯推断框架,与干扰和信道一起迭代,最终得到更精确的符号估计。仿真和试验结果验证了所提算法的有效性,与现有方法相比,本文所提方法具有更低的误码率和复杂度。 展开更多
关键词 正交频分复用 脉冲干扰 变分贝叶斯推断 稀疏贝叶斯学习 联合估计
下载PDF
高斯因子结构变分推断的导弹轨迹学习与估计
14
作者 董宝阳 解晖 +1 位作者 刘久富 刘向武 《东北师大学报(自然科学版)》 CAS 北大核心 2024年第3期79-86,共8页
针对具有非线性批量状态的弹道导弹的状态难以预测和高斯变分推断估计方法存在迭代误差大、估计时间久等缺点,提出一种具有因子结构协方差的高斯变分推断方法.通过对协方差进行分解,将所有参数之间的协方差关系转化为矩阵中部分主要参... 针对具有非线性批量状态的弹道导弹的状态难以预测和高斯变分推断估计方法存在迭代误差大、估计时间久等缺点,提出一种具有因子结构协方差的高斯变分推断方法.通过对协方差进行分解,将所有参数之间的协方差关系转化为矩阵中部分主要参数之间的联系.同时采用随机梯度上升方法、重参数化技巧以及自适应学习率方法对变分下界以及变分参数进行迭代优化,获取最优参数.通过该算法对导弹状态估计实例分析,并与基于高斯变分推断的状态估计算法进行了比较.结果表明,提出的具有因子协方差结构的高斯变分推断方法,仿真计算时间平均缩减了23.6%,能够有效地提高导弹状态估计的计算效率,降低了计算误差. 展开更多
关键词 导弹轨迹估计 变分推断 协方差因子结构 参数学习
下载PDF
基于相位偏移的压缩感知无源多目标定位方法 被引量:1
15
作者 盛金锋 李宁 +2 位作者 郭艳 陈承 李华静 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2024年第2期241-248,共8页
无源定位作为一种新兴的定位技术,是安防监控、入侵检测和接触跟踪等被动传感领域的研究热点。其通过分析无源目标对无线链路的阴影效应来定位目标。相位是无线信号的一个重要特性,比信号强度更具细粒度。为提升定位性能,利用无线链路... 无源定位作为一种新兴的定位技术,是安防监控、入侵检测和接触跟踪等被动传感领域的研究热点。其通过分析无源目标对无线链路的阴影效应来定位目标。相位是无线信号的一个重要特性,比信号强度更具细粒度。为提升定位性能,利用无线链路相位信息,提出基于相位偏移的压缩感知无源多目标定位方法。该方法将接收信号相位偏移值作为观测数据,结合变分贝叶斯推理,恢复目标位置稀疏向量。仿真实验结果表明,在6.5 m×6.5 m的监测区域中,基于接收信号强度的定位方法平均定位误差为0.579 0 m,而该方法的平均定位误差为0.254 7 m,定位精度提升超过1倍,且该方法具有较强的鲁棒性。 展开更多
关键词 无源定位 压缩感知 相位偏移 变分贝叶斯推理
下载PDF
基于稀疏贝叶斯学习的混合mMIMO系统波达方向估计
16
作者 慕欣茹 傅海军 戴继生 《数据采集与处理》 CSCD 北大核心 2024年第5期1260-1270,共11页
波达方向估计是混合mMIMO系统波束成形得以应用的前提,基于协方差矩阵重构的子空间方法在相干信号和有限快拍数条件下性能损失较大。为了应对上述挑战,提出了一种基于稀疏贝叶斯学习的混合mMIMO系统波达方向估计方法,主要创新之处在于:... 波达方向估计是混合mMIMO系统波束成形得以应用的前提,基于协方差矩阵重构的子空间方法在相干信号和有限快拍数条件下性能损失较大。为了应对上述挑战,提出了一种基于稀疏贝叶斯学习的混合mMIMO系统波达方向估计方法,主要创新之处在于:将混合mMIMO系统的波达方向估计问题转化为稀疏信号恢复问题,从而绕过空间协方差矩阵重构,避免了其带来的性能损失。为了便于进行贝叶斯推断,进一步利用变分贝叶斯近似思想,在恢复稀疏信号的同时,自适应估计出未知参数,显著改善了对噪声和相干信号的鲁棒性,提升了有限快拍数情况下的波达方向估计性能。数值模拟结果验证了所提方法的优越性。 展开更多
关键词 波达方向估计 模数混合结构 大规模多输入多输出系统 稀疏贝叶斯学习 变分贝叶斯推断
下载PDF
Joint Modeling of Citation Networks and User Preferences for Academic Tagging Recommender System
17
作者 Weiming Huang Baisong Liu Zhaoliang Wang 《Computers, Materials & Continua》 SCIE EI 2024年第6期4449-4469,共21页
In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniq... In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniques and tries to combine nodes’textual content for modelling.They still do not,however,directly simulate many interactions in network learning.In order to address these issues,we present a novel system that more thoroughly integrates user preferences and citation networks into article labelling recommendations.Specifically,we first employ path similarity to quantify the degree of similarity between user labelling preferences and articles in the citation network.Then,the Commuting Matrix for massive node pair paths is used to improve computational performance.Finally,the two commonalities mentioned above are combined with the interaction paper labels based on the additivity of Poisson distribution.In addition,we also consider solving the model’s parameters by applying variational inference.Experimental results demonstrate that our suggested framework agrees and significantly outperforms the state-of-the-art baseline on two real datasets by efficiently merging the three relational data.Based on the Area Under Curve(AUC)and Mean Average Precision(MAP)analysis,the performance of the suggested task is evaluated,and it is demonstrated to have a greater solving efficiency than current techniques. 展开更多
关键词 Collaborative filtering citation networks variational inference poisson factorization tag recommendation
下载PDF
基于吉布斯采样的稀疏水声信道估计方法
18
作者 佟文涛 葛威 +1 位作者 贾亦真 张嘉恒 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第2期434-442,共9页
The estimation of sparse underwater acoustic(UWA)channels can be regarded as an inference problem involving hidden variables within the Bayesian framework.While the classical sparse Bayesian learning(SBL),derived thro... The estimation of sparse underwater acoustic(UWA)channels can be regarded as an inference problem involving hidden variables within the Bayesian framework.While the classical sparse Bayesian learning(SBL),derived through the expectation maximization(EM)algorithm,has been widely employed for UWA channel estimation,it still differs from the real posterior expectation of channels.In this paper,we propose an approach that combines variational inference(VI)and Markov chain Monte Carlo(MCMC)methods to provide a more accurate posterior estimation.Specifically,the SBL is first re-derived with VI,allowing us to replace the posterior distribution of the hidden variables with a variational distribution.Then,we determine the full conditional probability distribution for each variable in the variational distribution and then iteratively perform random Gibbs sampling in MCMC to converge the Markov chain.The results of simulation and experiment indicate that our estimation method achieves lower mean square error and bit error rate compared to the classic SBL approach.Additionally,it demonstrates an acceptable convergence speed. 展开更多
关键词 Sparse bayesian learning Channel estimation variational inference Gibbs sampling
下载PDF
基于统计模型的人声识别优化研究
19
作者 晁松杰 娄艺 《电声技术》 2024年第9期73-75,共3页
为研究基于变分推断的高斯混合模型(Gaussian Mixture Model,GMM)在人声识别中的优化方法,首先设计人声识别系统框架,其次阐述传统GMM在人声识别系统中的基本原理和特点,再次详细介绍变分推断的基本原理及其在GMM优化中的应用,最后采用... 为研究基于变分推断的高斯混合模型(Gaussian Mixture Model,GMM)在人声识别中的优化方法,首先设计人声识别系统框架,其次阐述传统GMM在人声识别系统中的基本原理和特点,再次详细介绍变分推断的基本原理及其在GMM优化中的应用,最后采用公开数据集进行实验评估。仿真结果表明,优化后的GMM在识别准确率、精确率、召回率以及F1分数等指标上均显著优于传统GMM。 展开更多
关键词 高斯混合模型(GMM) 人声识别 变分推断 统计模型
下载PDF
可信推断近场稀疏综合阵列三维毫米波成像
20
作者 杨磊 霍鑫 +2 位作者 申瑞阳 宋昊 胡仲伟 《雷达学报(中英文)》 EI CSCD 北大核心 2024年第5期1092-1108,共17页
考虑到主动式电扫描毫米波成像系统在实际应用中成像场景要求大,分辨率要求高,但毫米波的波长短,继而造成满足奈奎斯特采样定理的均匀阵列规模及馈电网络复杂度过高,面临着成像精度、成像速度和系统成本之间的矛盾。针对以上问题,该文... 考虑到主动式电扫描毫米波成像系统在实际应用中成像场景要求大,分辨率要求高,但毫米波的波长短,继而造成满足奈奎斯特采样定理的均匀阵列规模及馈电网络复杂度过高,面临着成像精度、成像速度和系统成本之间的矛盾。针对以上问题,该文提出了可信推断近场稀疏综合阵列算法(CBI-SAS),在全贝叶斯学习框架下,该算法基于贝叶斯推断对复激励权值进行稀疏优化,得到复激励权值的完全统计后验概率密度函数,从而利用其高阶统计信息得到复激励权值的最优值及其置信区间和置信度。在贝叶斯推断中,为了实现较少数量的阵元合成期望波束方向图,可通过对复值激励权值引入重尾的拉普拉斯稀疏先验。然而,由于先验概率模型与参考方向图数据模型非共轭,因此需对先验模型进行分层贝叶斯建模,从而保证得到的复激励权值完全后验分布具有闭合解析解。为了避免求解完全后验分布的高维积分,采用变分贝叶斯期望最大化方法计算复激励权值后验概率密度函数,实现复激励权值的可信推断。仿真模拟实验结果显示,相较于传统稀疏阵列合成方法,所提方法阵元稀疏度更低、归一化均方误差更小、匹配方向图精度更好。此外,基于设计的稀疏阵列采集近场一维电扫和二维平面全电扫实测回波数据后,利用改进三维时域算法进行三维重建,验证了所提CBI-SAS算法在保证成像结果的同时降低了系统复杂性的优势。 展开更多
关键词 毫米波成像 贝叶斯推断 稀疏阵列合成 分层贝叶斯 变分贝叶斯期望最大
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部