In 1999, Christopher gave a necessary and sufficient condition for polynomial Li′enard centers, which requires coupled functional equations, where the primitive functions of the damping function and the restoring fun...In 1999, Christopher gave a necessary and sufficient condition for polynomial Li′enard centers, which requires coupled functional equations, where the primitive functions of the damping function and the restoring function are involved, to have polynomial solutions. In order to judge whether the coupled functional equations are solvable, in this paper we give an algorithm to compute a Gr¨obner basis for irreducible decomposition of algebraic varieties so as to find algebraic relations among coefficients of the damping function and the restoring function. We demonstrate the algorithm for polynomial Li′enard systems of degree 5, which are divided into 25 cases. We find all conditions of those coefficients for the polynomial Li′enard center in 13 cases and prove that the origin is not a center in the other 12 cases.展开更多
基金National Natural Science Foundation of China(Grant No.11371264)Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20120181110062)Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme(Grant No.FP7-PEOPLE-2012-IRSES-316338)
文摘In 1999, Christopher gave a necessary and sufficient condition for polynomial Li′enard centers, which requires coupled functional equations, where the primitive functions of the damping function and the restoring function are involved, to have polynomial solutions. In order to judge whether the coupled functional equations are solvable, in this paper we give an algorithm to compute a Gr¨obner basis for irreducible decomposition of algebraic varieties so as to find algebraic relations among coefficients of the damping function and the restoring function. We demonstrate the algorithm for polynomial Li′enard systems of degree 5, which are divided into 25 cases. We find all conditions of those coefficients for the polynomial Li′enard center in 13 cases and prove that the origin is not a center in the other 12 cases.