期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Probabilistic Global Maximum Power Point Tracking Algorithm for Continuously Varying Partial Shading Conditions on Autonomous PV Systems
1
作者 Kha Bao Khanh Cao Vincent Boitier 《Energy and Power Engineering》 2024年第1期21-42,共22页
A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there ... A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there is a need for a control schema to force the PV string to operate at global maximum power point (GMPP). While a lot of tracking methods have been proposed in the literature, they are usually complex and do not fully take advantage of the available characteristics of the PV array. This work highlights how the voltage at operating point and the forward voltage of the bypass diode are considered to design a global maximum power point tracking (GMPPT) algorithm with a very limited global search phase called Fast GMPPT. This algorithm successfully tracks GMPP between 94% and 98% of the time under a theoretical evaluation. It is then compared against Perturb and Observe, Deterministic Particle Swarm Optimization, and Grey Wolf Optimization under a sequence of irradiance steps as well as a power-over-voltage characteristics profile that mimics the electrical characteristics of a PV string under varying partial shading conditions. Overall, the simulation with the sequence of irradiance steps shows that while Fast GMPPT does not have the best convergence time, it has an excellent convergence rate as well as causes the least amount of power loss during the global search phase. Experimental test under varying partial shading conditions shows that while the GMPPT proposal is simple and lightweight, it is very performant under a wide range of dynamically varying partial shading conditions and boasts the best energy efficiency (94.74%) out of the 4 tested algorithms. 展开更多
关键词 PHOTOVOLTAIC PV Global Maximum Power Point Tracking GMPPT Fast varying Partial Shading conditions Autonomous PV Systems GMPPT Review
下载PDF
Model Parameter Transfer for Gear Fault Diagnosis under Varying Working Conditions 被引量:2
2
作者 Chao Chen Fei Shen +1 位作者 Jiawen Xu Ruqiang Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第1期168-180,共13页
Gear fault diagnosis technologies have received rapid development and been effectively implemented in many engineering applications.However,the various working conditions would degrade the diagnostic performance and m... Gear fault diagnosis technologies have received rapid development and been effectively implemented in many engineering applications.However,the various working conditions would degrade the diagnostic performance and make gear fault diagnosis(GFD)more and more challenging.In this paper,a novel model parameter transfer(NMPT)is proposed to boost the performance of GFD under varying working conditions.Based on the previous transfer strategy that controls empirical risk of source domain,this method further integrates the superiorities of multi-task learning with the idea of transfer learning(TL)to acquire transferable knowledge by minimizing the discrepancies of separating hyperplanes between one specific working condition(target domain)and another(source domain),and then transferring both commonality and specialty parameters over tasks to make use of source domain samples to assist target GFD task when sufficient labeled samples from target domain are unavailable.For NMPT implementation,insufficient target domain features and abundant source domain features with supervised information are fed into NMPT model to train a robust classifier for target GFD task.Related experiments prove that NMPT is expected to be a valuable technology to boost practical GFD performance under various working conditions.The proposed methods provides a transfer learning-based framework to handle the problem of insufficient training samples in target task caused by variable operation conditions. 展开更多
关键词 Gear fault diagnosis Model parameter transfer varying working conditions Least square support vector machine
下载PDF
Lifted System Framework for Learning Control with Different Trial Lengths 被引量:3
3
作者 Xue-Fang Li Jian-Xin Xu 《International Journal of Automation and computing》 EI CSCD 2015年第3期273-280,共8页
This paper addresses an iterative learning control(ILC) design problem for discrete-time linear systems with randomly varying trial lengths. Due to the variation of the trial lengths, a stochastic matrix and an iterat... This paper addresses an iterative learning control(ILC) design problem for discrete-time linear systems with randomly varying trial lengths. Due to the variation of the trial lengths, a stochastic matrix and an iteration-average operator are introduced to present a unified expression of ILC scheme. By using the framework of lifted system, the learning convergence condition of ILC in mathematical expectation is derived without using λ-norm. It is shown that the requirement on classic ILC that all trial lengths must be identical is mitigated and the identical initialization condition can be also removed. In the end, two illustrative examples are presented to demonstrate the performance and the effectiveness of the proposed ILC scheme for both time-invariant and time-varying linear systems. 展开更多
关键词 Iterative learning control average operator randomly varying trial lengths identical initialization condition lifted sys-tem.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部