A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there ...A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there is a need for a control schema to force the PV string to operate at global maximum power point (GMPP). While a lot of tracking methods have been proposed in the literature, they are usually complex and do not fully take advantage of the available characteristics of the PV array. This work highlights how the voltage at operating point and the forward voltage of the bypass diode are considered to design a global maximum power point tracking (GMPPT) algorithm with a very limited global search phase called Fast GMPPT. This algorithm successfully tracks GMPP between 94% and 98% of the time under a theoretical evaluation. It is then compared against Perturb and Observe, Deterministic Particle Swarm Optimization, and Grey Wolf Optimization under a sequence of irradiance steps as well as a power-over-voltage characteristics profile that mimics the electrical characteristics of a PV string under varying partial shading conditions. Overall, the simulation with the sequence of irradiance steps shows that while Fast GMPPT does not have the best convergence time, it has an excellent convergence rate as well as causes the least amount of power loss during the global search phase. Experimental test under varying partial shading conditions shows that while the GMPPT proposal is simple and lightweight, it is very performant under a wide range of dynamically varying partial shading conditions and boasts the best energy efficiency (94.74%) out of the 4 tested algorithms.展开更多
Gear fault diagnosis technologies have received rapid development and been effectively implemented in many engineering applications.However,the various working conditions would degrade the diagnostic performance and m...Gear fault diagnosis technologies have received rapid development and been effectively implemented in many engineering applications.However,the various working conditions would degrade the diagnostic performance and make gear fault diagnosis(GFD)more and more challenging.In this paper,a novel model parameter transfer(NMPT)is proposed to boost the performance of GFD under varying working conditions.Based on the previous transfer strategy that controls empirical risk of source domain,this method further integrates the superiorities of multi-task learning with the idea of transfer learning(TL)to acquire transferable knowledge by minimizing the discrepancies of separating hyperplanes between one specific working condition(target domain)and another(source domain),and then transferring both commonality and specialty parameters over tasks to make use of source domain samples to assist target GFD task when sufficient labeled samples from target domain are unavailable.For NMPT implementation,insufficient target domain features and abundant source domain features with supervised information are fed into NMPT model to train a robust classifier for target GFD task.Related experiments prove that NMPT is expected to be a valuable technology to boost practical GFD performance under various working conditions.The proposed methods provides a transfer learning-based framework to handle the problem of insufficient training samples in target task caused by variable operation conditions.展开更多
A general review is given about the research progress of the rotating machinery condition monitoring under varying working condition. The major typical methods for analyzing are reviewed,including their progress,defic...A general review is given about the research progress of the rotating machinery condition monitoring under varying working condition. The major typical methods for analyzing are reviewed,including their progress,deficiencies and capabilities. Some prospects are given finally.展开更多
A considerable amount of tunnelling has been going on in India for various projects such as hydroelectric power, irrigation, roads and railways. Most of these projects are located in Himalayas, far away from the urban...A considerable amount of tunnelling has been going on in India for various projects such as hydroelectric power, irrigation, roads and railways. Most of these projects are located in Himalayas, far away from the urban areas. Tunnelling through weak and jointed rock masses such as the one in the Himalayas is a challenging task for the planners, designers, engineers and geologists because of high overburden, thickly vegetated surface, weak, poor and fragile rocks and highly varying geology with the presence of numerous small and big shear zones, faults, etc. Due to these reasons, various tunnelling problems have been faced in the past and are still being encountered. Failures and the problems may be regarded as challenges and opportunities for generating new knowledge base and thereby increasing self-reliance in tunnelling. The experiences of Himalayan tunnelling through weak and fragile rocks covering varying and mixed geology, understanding on tunnelling in squeezing ground conditions and applicability of TBM in Himalayas are presented. It has also been highlighted that the probe holes planning, drilling and monitoring shall be followed seriously to reduce the geological surprises.展开更多
We derive higher-order expansions of L-statistics of independent risks X1,..., Xn under conditions on the underlying distribution function F. The new results are applied to derive the asymptotic expansions of ratios o...We derive higher-order expansions of L-statistics of independent risks X1,..., Xn under conditions on the underlying distribution function F. The new results are applied to derive the asymptotic expansions of ratios of two kinds of risk measures, stop-loss premium and excess return on capital, respectively. Several examples and a Monte Carlo simulation study show the efficiency of our novel asymptotic expansions. Keywords smoothly varying condition, second-order regular variation, tail asymptotics, value-at-risk, con- ditional tail expectation, largest claims reinsurance, ratio of risk measure, excess return on capital展开更多
文摘A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there is a need for a control schema to force the PV string to operate at global maximum power point (GMPP). While a lot of tracking methods have been proposed in the literature, they are usually complex and do not fully take advantage of the available characteristics of the PV array. This work highlights how the voltage at operating point and the forward voltage of the bypass diode are considered to design a global maximum power point tracking (GMPPT) algorithm with a very limited global search phase called Fast GMPPT. This algorithm successfully tracks GMPP between 94% and 98% of the time under a theoretical evaluation. It is then compared against Perturb and Observe, Deterministic Particle Swarm Optimization, and Grey Wolf Optimization under a sequence of irradiance steps as well as a power-over-voltage characteristics profile that mimics the electrical characteristics of a PV string under varying partial shading conditions. Overall, the simulation with the sequence of irradiance steps shows that while Fast GMPPT does not have the best convergence time, it has an excellent convergence rate as well as causes the least amount of power loss during the global search phase. Experimental test under varying partial shading conditions shows that while the GMPPT proposal is simple and lightweight, it is very performant under a wide range of dynamically varying partial shading conditions and boasts the best energy efficiency (94.74%) out of the 4 tested algorithms.
基金Supported by National Natural Science Foundation of China(Grant No.51835009).
文摘Gear fault diagnosis technologies have received rapid development and been effectively implemented in many engineering applications.However,the various working conditions would degrade the diagnostic performance and make gear fault diagnosis(GFD)more and more challenging.In this paper,a novel model parameter transfer(NMPT)is proposed to boost the performance of GFD under varying working conditions.Based on the previous transfer strategy that controls empirical risk of source domain,this method further integrates the superiorities of multi-task learning with the idea of transfer learning(TL)to acquire transferable knowledge by minimizing the discrepancies of separating hyperplanes between one specific working condition(target domain)and another(source domain),and then transferring both commonality and specialty parameters over tasks to make use of source domain samples to assist target GFD task when sufficient labeled samples from target domain are unavailable.For NMPT implementation,insufficient target domain features and abundant source domain features with supervised information are fed into NMPT model to train a robust classifier for target GFD task.Related experiments prove that NMPT is expected to be a valuable technology to boost practical GFD performance under various working conditions.The proposed methods provides a transfer learning-based framework to handle the problem of insufficient training samples in target task caused by variable operation conditions.
基金National Natural Science Foundation of China(No.51125022)the Ph.D.Programs Foundation of Ministry of Education of China(No.20110201110025)Fundamental Research Funds for the Central Universities of China
文摘A general review is given about the research progress of the rotating machinery condition monitoring under varying working condition. The major typical methods for analyzing are reviewed,including their progress,deficiencies and capabilities. Some prospects are given finally.
文摘A considerable amount of tunnelling has been going on in India for various projects such as hydroelectric power, irrigation, roads and railways. Most of these projects are located in Himalayas, far away from the urban areas. Tunnelling through weak and jointed rock masses such as the one in the Himalayas is a challenging task for the planners, designers, engineers and geologists because of high overburden, thickly vegetated surface, weak, poor and fragile rocks and highly varying geology with the presence of numerous small and big shear zones, faults, etc. Due to these reasons, various tunnelling problems have been faced in the past and are still being encountered. Failures and the problems may be regarded as challenges and opportunities for generating new knowledge base and thereby increasing self-reliance in tunnelling. The experiences of Himalayan tunnelling through weak and fragile rocks covering varying and mixed geology, understanding on tunnelling in squeezing ground conditions and applicability of TBM in Himalayas are presented. It has also been highlighted that the probe holes planning, drilling and monitoring shall be followed seriously to reduce the geological surprises.
基金supported by the Swiss National Science Foundation(Grant Nos.2000211401633/1,200021-134785 and 200021-1401633/1)Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme(Grant No.RARE-318984)+1 种基金National Natural Science Foundation of China(Grant No.11171275)the Natural Science Foundation Project of Chongqing(Grant No.cstc2012jjA00029)
文摘We derive higher-order expansions of L-statistics of independent risks X1,..., Xn under conditions on the underlying distribution function F. The new results are applied to derive the asymptotic expansions of ratios of two kinds of risk measures, stop-loss premium and excess return on capital, respectively. Several examples and a Monte Carlo simulation study show the efficiency of our novel asymptotic expansions. Keywords smoothly varying condition, second-order regular variation, tail asymptotics, value-at-risk, con- ditional tail expectation, largest claims reinsurance, ratio of risk measure, excess return on capital