The femtosecond pulse shaping technique has been shown to be an effective method to control the multi-photon absorption by the light–matter interaction. Previous studies mainly focused on the quantum coherent control...The femtosecond pulse shaping technique has been shown to be an effective method to control the multi-photon absorption by the light–matter interaction. Previous studies mainly focused on the quantum coherent control of the multi-photon absorption by the phase, amplitude and polarization modulation, but the coherent features of the multi-photon absorption depending on the energy level structure, the laser spectrum bandwidth and laser central frequency still lack in-depth systematic research. In this work, we further explore the coherent features of the resonance-mediated two-photon absorption in a rubidium atom by varying the energy level structure, spectrum bandwidth and central frequency of the femtosecond laser field. The theoretical results show that the change of the intermediate state detuning can effectively influence the enhancement of the near-resonant part, which further affects the transform-limited (TL)-normalized final state population maximum. Moreover, as the laser spectrum bandwidth increases, the TL-normalized final state population maximum can be effectively enhanced due to the increase of the enhancement in the near-resonant part, but the TL-normalized final state population maximum is constant by varying the laser central frequency. These studies can provide a clear physical picture for understanding the coherent features of the resonance-mediated two-photon absorption, and can also provide a theoretical guidance for the future applications.展开更多
Owing to the interactions among the complex terrain, bottom materials, and the complicate hydrodynam-ics, typhoon waves show special characteristics as big waves appeared at the high water level (HWL) and small wave...Owing to the interactions among the complex terrain, bottom materials, and the complicate hydrodynam-ics, typhoon waves show special characteristics as big waves appeared at the high water level (HWL) and small waves emerged at low and middle water levels (LWL and MWL) in radial sand ridges (RSR). It is as-sumed that the mud damping, sandy bed friction and wave breaking effects have a great influence on the typhoon wave propagation in this area. Under the low wave energy, a mud layer will form and transport into the shallow area, thus the mud damping effects dominate at the LWL and the MWL. And high Collins coef-ficient (c around 1) can be applied to computing the damping effects at the LWL and the MWL. But under the high wave energy, the bottom sediment will be stirred and suspended, and then the damping effects disappear at the HWL. Thus the varying Collins coefficient with the water level method (VCWL) is imple-mented into the SWAN to model the typhoon wave process in the Lanshayang Channel (LSYC) of the RSR, the observed wave data under “Winnie” (“9711”) typhoon was used as validation. The results show that the typhoon wave in the RSR area is able to be simulated by the VCWL method concisely, and a constant wave breaking coefficient (γ) equaling 0.78 is better for the RSR where wide tidal flats and gentle bed slopes exist.展开更多
With the financial crisis behind them,developing countries are now focusing on tackling specific challenges such as coping with inflation-a ry pressure and dealing with high commodity prices.In contrast,prospects for ...With the financial crisis behind them,developing countries are now focusing on tackling specific challenges such as coping with inflation-a ry pressure and dealing with high commodity prices.In contrast,prospects for high-income countries and many of Europe’s developingand banking-sector budget consolidation and concerns over fiscal sus-tainability.Global Economic Prospects,the latest report of the World Bank,discussedthese issues.Edited excerpts follow:展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 51132004,11474096 and 11604199the Science and Technology Commission of Shanghai Municipality under Grant No 14JC1401500the Higher Education Key Program of He'nan Province under Grant Nos 17A140025 and 16A140030
文摘The femtosecond pulse shaping technique has been shown to be an effective method to control the multi-photon absorption by the light–matter interaction. Previous studies mainly focused on the quantum coherent control of the multi-photon absorption by the phase, amplitude and polarization modulation, but the coherent features of the multi-photon absorption depending on the energy level structure, the laser spectrum bandwidth and laser central frequency still lack in-depth systematic research. In this work, we further explore the coherent features of the resonance-mediated two-photon absorption in a rubidium atom by varying the energy level structure, spectrum bandwidth and central frequency of the femtosecond laser field. The theoretical results show that the change of the intermediate state detuning can effectively influence the enhancement of the near-resonant part, which further affects the transform-limited (TL)-normalized final state population maximum. Moreover, as the laser spectrum bandwidth increases, the TL-normalized final state population maximum can be effectively enhanced due to the increase of the enhancement in the near-resonant part, but the TL-normalized final state population maximum is constant by varying the laser central frequency. These studies can provide a clear physical picture for understanding the coherent features of the resonance-mediated two-photon absorption, and can also provide a theoretical guidance for the future applications.
基金The National High Technology Research and Development Program(863 Program)of China under contract No.2012AA112509the National Natural Science Fundation of China under contract No.41373112the Open Research Foundation from the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Nanjing Hydraulic Research Institute under contract No.2012491311
文摘Owing to the interactions among the complex terrain, bottom materials, and the complicate hydrodynam-ics, typhoon waves show special characteristics as big waves appeared at the high water level (HWL) and small waves emerged at low and middle water levels (LWL and MWL) in radial sand ridges (RSR). It is as-sumed that the mud damping, sandy bed friction and wave breaking effects have a great influence on the typhoon wave propagation in this area. Under the low wave energy, a mud layer will form and transport into the shallow area, thus the mud damping effects dominate at the LWL and the MWL. And high Collins coef-ficient (c around 1) can be applied to computing the damping effects at the LWL and the MWL. But under the high wave energy, the bottom sediment will be stirred and suspended, and then the damping effects disappear at the HWL. Thus the varying Collins coefficient with the water level method (VCWL) is imple-mented into the SWAN to model the typhoon wave process in the Lanshayang Channel (LSYC) of the RSR, the observed wave data under “Winnie” (“9711”) typhoon was used as validation. The results show that the typhoon wave in the RSR area is able to be simulated by the VCWL method concisely, and a constant wave breaking coefficient (γ) equaling 0.78 is better for the RSR where wide tidal flats and gentle bed slopes exist.
文摘With the financial crisis behind them,developing countries are now focusing on tackling specific challenges such as coping with inflation-a ry pressure and dealing with high commodity prices.In contrast,prospects for high-income countries and many of Europe’s developingand banking-sector budget consolidation and concerns over fiscal sus-tainability.Global Economic Prospects,the latest report of the World Bank,discussedthese issues.Edited excerpts follow: