Background:Xuefu Zhuyu decoction(XFZY)could significantly improve the function of hypertensive vascular endothelial cells,but the targets and mechanism are not clear.This study is to analyze the pharmacological substa...Background:Xuefu Zhuyu decoction(XFZY)could significantly improve the function of hypertensive vascular endothelial cells,but the targets and mechanism are not clear.This study is to analyze the pharmacological substances and targets of Xuefu Zhuyu decoction in hypertensive vascular endothelial cells.Methods:This study used Xuefu Zhuyu decoction to intervene human umbilical vein endothelial cells incubated by hypertensive patients’serum,then detected the function of vascular endothelial cells.The aqueous extract of XFZY was analyzed and validated by liquid chromatography-mass spectrometry technology;Finally,macromolecular docking technology was used to analyze the potential active substances and targets of XFZY in the prevention and treatment of hypertension.Results:Compared with the model group,the XFZY group showed a significant increase in NO expression(P<0.01)and a significant decrease in ET-1 expression(P<0.001);and the expression of BIP,P-JNK,CHOP,and BAX in XFZY group cells was significantly decreased(P<0.001),while the expression of JNK and BCL2 was significantly increased(P<0.001).19 main compounds were identified in XFZY and there were 3 pairs of molecular complexes with high affinity for markers of the endoplasmic reticulum stress,including BIP-Hesperidin complex,BIP-HSYA complex and JNK-Naringin complex.Conclusion:This study analyzed the potential pharmacodynamic substance and targets of Xuefu Zhuyu decoction in improving the function of hypertensive vascular endothelial cells,which could provide a scientific basis for the future molecular mechanism of XFZY in treating hypertension.展开更多
Objective: Study blood vessel injury and gene expression indicating vascular endothelial cell apoptosis induced by mannitol with and without administration of anti-oxidative vitamins. Methods: Healthy rabbits were ran...Objective: Study blood vessel injury and gene expression indicating vascular endothelial cell apoptosis induced by mannitol with and without administration of anti-oxidative vitamins. Methods: Healthy rabbits were randomly divided into four groups. Mannitol was injected into the vein of the rabbit ear in each animal. Pre-treatment prior to mannitol injection was per- formed with normal saline (group B), vitamin C (group C) and vitamin E (group D). Blood vessel injury was assessed under electron and light microscopy. In a second experiment, cell culture specimen of human umbilical vein endothelial cells were treated with mannitol. Pre-treatment was done with normal saline (sample B), vitamin C (sample C) and vitamin E (sample D). Total RNA was extracted with the original single step procedure, followed by hybridisation and analysis of gene expression. Results: In the animal experiment, serious blood vessel injury was seen in group A and group B. Group D showed light injury only, and normal tissue without pathological changes was seen in group C. Of all 330 apoptosis-related genes analysed in human cell culture specimen, no significant difference was seen after pre-treatment with normal saline, compared with the gene chip without pre-treatment. On the gene chip pre-treated with vitamin C, 45 apoptosis genes were down-regulated and 34 anti-apoptosis genes were up-regulated. Pre-treatment with vitamin E resulted in the down-regulation of 3 apoptosis genes. Conclusion: Vitamin C can protect vascular endothelial cells from mannitol-induced injury.展开更多
Maintaining the integrity of the blood-spinal cord barrier is critical for the recove ry of spinal cord injury.Ferro ptosis contributes to the pathogenesis of spinal cord injury.We hypothesized that ferroptosis is inv...Maintaining the integrity of the blood-spinal cord barrier is critical for the recove ry of spinal cord injury.Ferro ptosis contributes to the pathogenesis of spinal cord injury.We hypothesized that ferroptosis is involved in disruption of the blood-s pinal cord barrier.In this study,we administe red the ferroptosis inhibitor liproxstatin-1 intraperitoneally after contusive spinal co rd injury in rats.Liproxstatin-1 improved locomotor recovery and somatosensory evoked potential electrophysiological performance after spinal cord inju ry.Liproxstatin-1 maintained blood-spinal cord barrier integrity by upregulation of the expression of tight junction protein.Liproxstatin-1 inhibited ferroptosis of endothelial cell after spinal cord injury,as shown by the immunofluorescence of an endothelial cell marker(rat endothelium cell antigen-1,RECA-1) and fe rroptosis markers Acyl-CoA synthetase long-chain family member 4 and 15-lipoxygenase.Liproxstatin-1reduced brain endothelial cell ferroptosis in vitro by upregulating glutathione peroxidase 4 and downregulating Acyl-CoA synthetase long-chain family member4 and 15-lipoxygenase.Furthermore,inflammatory cell recruitment and astrogliosis were mitigated after liproxstatin-1 treatment.In summary,liproxstatin-1im proved spinal cord injury recovery by inhibiting ferroptosis in endothelial cells and maintaining blood-s pinal co rd barrier integrity.展开更多
Summary: The contribution of particles to cardiovascular mortality and morbidity has been enlightened by epidemiologic and experimental studies. However, adverse biological effects of the particles with different siz...Summary: The contribution of particles to cardiovascular mortality and morbidity has been enlightened by epidemiologic and experimental studies. However, adverse biological effects of the particles with different sizes on cardiovascular cells have not been well recognized. In this study, sub-cultured human umbilical vein endothelial cells (HUVECs) were exposed to increasing concentrations of pure quartz particles (DQ) of three sizes (DQPM1, 〈1 μm; DQPM3-5, 3-5 μm; DQPM5, 5 μm) and carbon black particles of two sizes (CB0.1, 〈0.1 μm; CB 1, 〈 1 μm) for 24 h. Cytotoxicity was estimated by measuring the activity of lactate dehydrogenase (LDH) and cell viability. Nitric oxide (NO) generation and cyto- kines (TNF-α and IL-1β) releases were analyzed by using NO assay and enzyme-linked immunoabsorbent assay (ELISA), respectively. It was found that both particles induced adverse biological effects on HUVECs in a dose-dependent manner. The size of particle directly influenced the biological activity. For quartz, the smaller particles induced stronger cytotoxicity and higher levels of cytokine responses than those particles of big size. For carbon black particles, CB0.1 was more capable of inducing adverse responses on HUVECs than CB 1 only at lower particle concentrations, in contrast to those at higher concentrations. Meanwhile, our data also revealed that quartz particles performed stronger cell damage and produced higher levels of TNF-α than carbon black particles, even if particles size was similar. In conclusion, particle size as well as particle composition should be both considered in assessing vascular endothelial cells injury and inflammation responses induced by particles.展开更多
Summary: Although previous reports showed dmg-eluting stent (DES) could effectively inhibit neointima formation, in-stent restenosis (ISR) remains an important obstacle. The purpose of this study was to investiga...Summary: Although previous reports showed dmg-eluting stent (DES) could effectively inhibit neointima formation, in-stent restenosis (ISR) remains an important obstacle. The purpose of this study was to investigate different effects of paclitaxel on proliferation and cell cycle regulators between vascular smooth muscle cells (VSMCs) and vascular endothelial cells (VECs) of rats in vitro. The cultured VSMCs and VECs of rats from the same tissues were examined by using immunohistochemistry, flow cytometry and Western blotting in control and paclitaxel-treated groups. The results showed paclitaxel could effectively inhibit proliferation of VSMCs and VECs. However, as compared with VECs, prolif- eration of VSMCs in paclitaxel-treated group decreased less rapidly. The percentage of cells in G0-G1 and G2-M phases was reduced, and that in S phase increased after treatment for 72 h. The expression of cyclin D1 and B1, p27 and PCNA in VSMCs of paclitaxel-treated group was up-regulated, but that of p21 down-regulated as compared with VECs. It is concluded that there are significant differences in the expression of cell cycle regulators and proliferation rate between paclitaxel-treated VSMCs and paclitaxel-treated VECs, suggesting that the G1 S checkpoint regulated by paclitaxel may play a critical role in the development of complications of DES, which provides new strategies for treatments of ISR.展开更多
AIM: To evaluate the differential inhibitory effects of bevacizumab on cell proliferation of vascular endothelial growth factor (VEGF)-stimulated choroidal vascular endothelial cells (CVECs) and retinal vascular ...AIM: To evaluate the differential inhibitory effects of bevacizumab on cell proliferation of vascular endothelial growth factor (VEGF)-stimulated choroidal vascular endothelial cells (CVECs) and retinal vascular endothelial cells (RVECs) in vitro.METHODS: VEGF (400 ng/mL) enriched CVECs and RVECs were treated with escalating doses of bevacizumab (0.1, 0.5, 1, 1.5 and 2 mg/mL). Cell proliferation changes were analyzed with WST-1 assay and trypan blue exclusion assay at 48, 72h and 1wk. Morphological changes were recorded with bright field microscopy.RESULTS: VEGF enriched RVECs showed significantly more decline of cell viability than CVECs after bevacizumab treatment. One week after treatment, RVEC cell proliferation decreased by 29.7%, 37.5%, 52.8%, 35.9% and 45.6% at 0.1, 0.5, 1.0, 1.5 and 2 mg/mL bevacizumab respectively compared to CVEC proliferation decrease of 4.1%, 7.7%, 2.4%, 4.1% and 17.7% (P〈0.05) by WST-1 assay. Trypan blue exclusion assay also revealed similar decrease in RVEC proliferation of 20%, 60%, 73.3%, 80% and 93.3% compared to CVEC proliferation decrease of 4%, 12%, 22.9%, 16.7% and 22.2% respectively (P〈0.05). The maximum differential effect between the two cell types was observed at bevacizumab doses of 1.0 and 1.5 mg/mL at all time points. RVECs were 22 fold more sensitive (P〈0.01) compared to CVECs (52.8% vs 2.4%) at concentration of 1.0 mg/mL, and 8.7 fold more at 1.5 mg/mL (35.9% vs 4.1%) 1wk after treatment (P〈0.05 respectively).CONCLUSION: VEGF-enriched RVECs are more susceptible to bevacizumab inhibition than CVECs at clinically used dosage of 1.25 mg and this differential sensitivity between two cell types should be taken into consideration in dosage selection.展开更多
Morphological and functional abnormalities of vascular endothelial cells(VECs) are risk factors of ischemiareperfusion in skin flaps.Signaling pathway mediated by interleukin-1 receptor(IL-1 R) is essential to hypoxia...Morphological and functional abnormalities of vascular endothelial cells(VECs) are risk factors of ischemiareperfusion in skin flaps.Signaling pathway mediated by interleukin-1 receptor(IL-1 R) is essential to hypoxia/reoxygenation(H/R) injury of VECs.While the TIR/BB-loop mimetic(AS-1) disrupts the interaction between IL-1 R and myeloid differentiation primary-response protein 88(MyD88),its role in the VECs dysfunction under H/R is unclear.In this study,we first showed that there was an infiltration of inflammatory cells and the apoptosis of VECs by using a skin flap section from patients who received flap transplantation.We then showed that the H/R treatment induced apoptosis and loss of cell migration of endothelial cell line H926 were attenuated by AS-1.Furthermore,our data suggested that AS-1 inhibits the interaction between IL-1 R and MyD88,and subsequent phosphorylation of IκB and p38 pathway,as well as the nuclear localization of NF-κB subunit p65/p50.Thus,this study indicated that the protective role of AS-1 in H/R induced cellular injury may be due to the AS-1 mediated down-regulation of IL-1 R signaling pathway.展开更多
AIM:To determine the effect of exosomes derived from human umbilical cord blood mesenchymal stem cells(hUCMSCs)on the expression of vascular endothelial growth factor A(VEGF-A)in human retinal vascular endothelial cel...AIM:To determine the effect of exosomes derived from human umbilical cord blood mesenchymal stem cells(hUCMSCs)on the expression of vascular endothelial growth factor A(VEGF-A)in human retinal vascular endothelial cells(HRECs).METHODS:Exosomes were isolated from hUCMSCs using cryogenic ultracentrifugation and characterized by transmission electron microscopy,Western blotting and nanoparticle tracking analysis.HRECs were randomly divided into a normal control group(group A),a high glucose model group(group B),a high glucose group with 25μg/mL(group C),50μg/mL(group D),and 100μg/mL exosomes(group E).Twenty-four hours after coculture,the cell proliferation rate was detected using flow cytometry,and the VEGF-A level was detected using immunofluorescence.After coculture 8,16,and 24h,the expression levels of VEGF-A in each group were detected using PCR and Western blots.RESULTS:The characteristic morphology(membrane structured vesicles)and size(diameter between 50 and 200 nm)were observed under transmission electron microscopy.The average diameter of 122.7 nm was discovered by nanoparticle tracking analysis(NTA).The exosomal markers CD9,CD63,and HSP70 were strongly detected.The proliferation rate of the cells in group B increased after 24h of coculture.Immunofluorescence analyses revealed that the upregulation of VEGF-A expression in HRECs stimulated by high glucose could be downregulated by cocultured hUCMSC-derived exosomes(F=39.03,P<0.01).The upregulation of VEGF-A protein(group C:F=7.96;group D:F=17.29;group E:F=11.89;8h:F=9.45;16h:F=12.86;24h:F=42.28,P<0.05)and mRNA(group C:F=4.137;group D:F=13.64;group E:F=22.19;8h:F=7.253;16h:F=16.98;24h:F=22.62,P<0.05)in HRECs stimulated by high glucose was downregulated by cocultured hUCMSC-derived exosomes(P<0.05).CONCLUSION:hUCMSC-derived exosomes downregulate VEGF-A expression in HRECs stimulated by high glucose in time and concentration dependent manner.展开更多
Objective To study the possible intervention of isoflavones in cytotoxicity induced by cadmium in vascular endothelial cells. Methods An ECV 304 cell line derived from human umbilical vein endothelial cells was adopte...Objective To study the possible intervention of isoflavones in cytotoxicity induced by cadmium in vascular endothelial cells. Methods An ECV 304 cell line derived from human umbilical vein endothelial cells was adopted. Genistein / daidzein was added prior to or simultaneously with CdCl2, cell viability was determined by MTT assay, and metallothionein mRNA expression was monitored by RT-PCR method. Results Cell viability was higher in isoflavone and CdCl2 co-treated groups than that in CdCl2 treated group, with CdCl2 concentration at 10, 20, 40, and 80 μmol/L, respectively. However this increase was not observed in the group treated with CdCl2 at a concentration of 60 μmol/L. Isoflavones (10-10 mol/L to 10-5 mol/L) were added 24 h before cells were challenged with 80 μmol/L CdCl2 for 24 h or simultaneously with 80 μmol/L CdCl2. Genistein increased cell viability only at 10-5 mol/L, while daidzein caused a dose-dependent increase from 10-10 mol/L to 10-5 mol/L in co-treatment with CdCl2. In pre-treatment, genistein (10-7 to 10-5 mol/L) increased cell viability whereas only 10-5 mol/L of daidzein exerted protection. Apparent protection could be found when the cells were pre-treated with 10-5 mol/L isoflavones for over 12 h, whereas 24 h incubation was required in such a co-treatment, with the exception of daidzein that had a significant protection in only 3 h. Isoflavones (10-6 mol/L) incubated for 3 h to 24 h, increased MT IIA and MT IF mRNA expression, but the induction could not last for more than 24 h. Co-treatment with isoflavones could induce an additional induction of MT IIA mRNA expression in cells exposed to cadmium. However, the additional induction of MT IIA and MT IF mRNA was not seen when pre-treatment was carried out with isoflavones, with the exception of an increase in MT IIA mRNA expression in the daidzein pre-treated group. Conclusion Genistein/daidzein could reverse the cytotoxicity of cadmium either in pre-treatment or in co-treatment. The protection is the strongest in 10-5 mol/L of isoflavones with a dose-dependent pattern. There are differences between genistein and daidzein in their protective effects. Whether the protection of isoflavones is related to their capacity of inducing MT mRNA expression remains to be elucidated.展开更多
A new dynamic model for cell-deformation-induced adenosine triphosphate (ATP) release from vascular endothelial cells (VECs) is proposed in this paper to quantify the relationship between the ATP concentration at ...A new dynamic model for cell-deformation-induced adenosine triphosphate (ATP) release from vascular endothelial cells (VECs) is proposed in this paper to quantify the relationship between the ATP concentration at the surface of VECs and blood flow-induced shear stress. The simulation results demonstrate that ATP concentration at the surface of VECs predicted by the proposed new dynamic model is more consistent with the experimental observations than those by the existing static and dynamic models. Furthermore, it is the first time that a proportional-integral-derivative (PID) feedback controller is applied to modulate extracellular ATP concentration. Three types of desired ATP concentration profiles including constant, square wave and sinusoid are obtained by regulating the wall shear stress under this PID control. The systematic methodology utilized in this paper to model and control ATP release from VECs via adjusting external stimulus opens up a new scenario where quantitative investigations into the underlying mechanisms for many biochemical phenomena can be carded out for the sake of controlling specific cellular events.展开更多
In consideration of the mechanism for shear-stress-induced Ca^2+ influx via ATP(adenosine triphosphate)-gated ion channel P2X4 in vascular endothelial cells, a modified model is proposed to describe the shear-stres...In consideration of the mechanism for shear-stress-induced Ca^2+ influx via ATP(adenosine triphosphate)-gated ion channel P2X4 in vascular endothelial cells, a modified model is proposed to describe the shear-stress-induced Ca^2+ influx. It is affected both by the Ca^2+ gradient across the cell membrane and extracellular ATP concentration on the cell surface. Meanwhile, a new static ATP release model is constructed by using published experimental data. Combining the modified intracellular calcium dynamics model with the new ATP release model, we establish a nonlinear Ca^2+ dynamic system in vascular endothelial cells. The ATP-mediated calcium response in vascular endothelial cells subjected to shear stresses is analyzed by solving the governing equations of the integrated dynamic system. Numerical results show that the shear-stress-induced calcium response predicted by the proposed model is more consistent with the experimental observations than that predicted by existing models.展开更多
Stem cell medicine is gaining momentum in the development of therapy for various end-stage diseases.The search for new seed cells and exploration of their application prospects are topics of interest in stem cell medi...Stem cell medicine is gaining momentum in the development of therapy for various end-stage diseases.The search for new seed cells and exploration of their application prospects are topics of interest in stem cell medicine.In recent years,vascular endothelial cells(VECs)have attracted wide attention from scholars.VECs,which form the inner lining of blood vessels,are critically involved in many physiological functions,including permeability,angiogenesis,blood pressure regulation,immunity,and pathological development,such as atherosclerosis and malignant tumors.VECs have significant therapeutic effects and broad application prospects in stem cell medicine for the treatment of various refractory diseases,including atherosclerosis,myocardial infarction,diabetic complications,hypertension,coronavirus disease 2019,and malignant tumors.On the one hand,VECs and their extracellular vesicles can be directly used for the treatment of these diseases.On the other hand,VECs can be used as therapeutic targets for some diseases.However,there are still some obstacles to the use of VECs in stem cell medicine.In this review,advances in the applications and challenges that come with the use of these cells are discussed.展开更多
Objective:This study aimed to investigate the potential of human umbilical cord mesenchymal stem cell(hucMSC)-derived exosomes(hucMSC-Exos)in inhibiting hypoxia-induced cell hyper proliferation and overexpression of v...Objective:This study aimed to investigate the potential of human umbilical cord mesenchymal stem cell(hucMSC)-derived exosomes(hucMSC-Exos)in inhibiting hypoxia-induced cell hyper proliferation and overexpression of vascular endothelial growth factor A(VEGF-A)in immature human fetal retinal microvascular endothelial cells(hfRMECs).Methods:Exosomes were isolated from hucMSCs using cryogenic ultracentrifugation and characterized through various techniques,including transmission electron microscopy,nanoparticle tracking analysis,bicinchoninic acid assays,and western blotting.The hfRMECs were identified using von Willebrand factor(vWF)co-staining and divided into four groups:a control group cultured under normoxic condition,a hypoxic model group,a hypoxic group treated with low-concentration hucMSC-Exos(75μg/mL)and a hypoxic group treated with high-concentration hucMSC-Exos(100μg/mL).Cell viability and proliferation were assessed using Cell Counting Kit-8(CCK-8)assay and EdU(5-ethynyl-2′-deoxyuridine)assay respectively.Expression levels of VEGF-A were evaluated using RT-PCR,western blotting and immunofluorescence.Results:Hypoxia significantly increased hfRMECs’viability and proliferation by upregulating VEGF-A levels.The administration of hucMSC-Exos effectively reversed this response,with the high-concentration group exhibiting greater efficacy compared to the lowconcentration group.Conclusion:In conclusion,hucMSC-Exos can dose-dependently inhibit hypoxia-induced hyperproliferation and VEGF-A overexpression in immature fetal retinal microvascular endothelial cells.展开更多
AIMTo determine whether small interfering RNA (siRNA) of PGC-1α could inhibit vascular endothelial growth factor (VEGF) expression and tube formation in human retinal vascular endothelial cells (hRVECs).ME...AIMTo determine whether small interfering RNA (siRNA) of PGC-1α could inhibit vascular endothelial growth factor (VEGF) expression and tube formation in human retinal vascular endothelial cells (hRVECs).METHODShRVECs transfected with peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) siRNA were incubated for 24h and then placed into a normoxic (20%, O<sub>2</sub>) or hypoxic (1%, O<sub>2</sub>) environment for another 16h. PGC-1α mRNA and protein levels were detected by real-time PCR and Western blot. VEGF mRNA and protein levels were detected by real-time PCR and ELISA. Cell proliferation was evaluated by BrdU incorporation assay. Forty-eight hours after siRNA transfection, hRVECs were planted into Matrigel-coated plates and cultured under normoxic (20%, O<sub>2</sub>) or hypoxic (1%, O<sub>2</sub>) conditions for another 48h. The tube formation of hRVECs was observed under an optical microscope and quantified by counting the number of branch points and calculating the total tube length.RESULTSPGC-1α mRNA and protein levels were significantly reduced by PGC-1α siRNA, and VEGF mRNA and protein levels also decreased significantly. The percentage of BrdU-labeled cells in siPGC-1α groups were significantly decreased compared with control siRNA groups under normoxia and hypoxia in cell proliferation assay. In the tube formation assay, PGC-1α siRNA treated cells formed significantly fewer tubes.CONCLUSIONBlocking PGC-1α expression can inhibit VEGF expression in hRVECs and inhibit their ability to form tubes under both normoxic and hypoxic conditions.展开更多
After organ transplantation, rapid repair of injured vascular endothelial cell (VEC) is a key to prevent graft chronic dysfunction besides control of immunological rejection. Many studies have confirmed that vascular ...After organ transplantation, rapid repair of injured vascular endothelial cell (VEC) is a key to prevent graft chronic dysfunction besides control of immunological rejection. Many studies have confirmed that vascular endothelial growth factor 165 (VEGF165) could accelerate the repair of VEC injury, decrease thrombosis and thrombotic occlusion, and inhibit hyperplasia of the intima. This study was designed to construct eukaryotic expression plasmid pBudCE4.1/VEGF165, and observe its effect on the prolife ration of VEC. METHODS:The VEGF165 gene cloned from human heart tissue by RT-PCR was cloned into eukaryotic expression plasmid pBudCE4.1. The recombinant expression plasmid pBudCE4.1/VEGF165 was identified by restriction enzyme (Hind III and BamH I) digestion analysis, and was sequenced. The pBudCE4.1/VEGF165 was introduced into VEC through lipofection transfection. The VEGF165 mRNA expression by Northern blot and VEGF165 protein expression was detected by immunocytochemical staining. The effect of expression protein on VEC proliferation was detected by flow cytometry. RESULTS:The RT-PCR product of the VEGF165 gene was about 576bp. Sequencing analysis revealed that the sequence of the amplified VEGF165 gene was identical with that in GenBank. Restrictive enzyme digestion analysis showed that recombinant expression plasmid pBudCE4.1/ tVEGF165 had been constructed successfully. The expression of VEGF165 at mRNA and protein levels in the transformed VSMCs had been demonstrated by Northern blot and immunocytochemical staining respectively. The expressed product of VEGF165 could notably accelerate the proliferation of VECs. CONCLUSIONS:pBudCE4.1/VEGF165 is successfully cons- tructed and is expressed in VECs. Expressed VEGF165 can accelerate the VEC proliferation. The present study has laid a foundation for potential use of VEGF165 gene transfection to prevent and treat vascular stenosis in the transplanted organ.展开更多
AIM:To investigate the effects of collagen and opticin on the bioactivity of human retinal vascular endothelial cells(hR VECs),and explore its regulations by integrins and RhoA/ROCK1 signal pathway.METHODS:h RVECs wer...AIM:To investigate the effects of collagen and opticin on the bioactivity of human retinal vascular endothelial cells(hR VECs),and explore its regulations by integrins and RhoA/ROCK1 signal pathway.METHODS:h RVECs were cultured in collagen and treated by opticin,and cell-based bioactivity assays of cell proliferation,migration,and adhesion were performed.The expression of integrinα2,integrinβ1,Rho A and ROCK1 were examined with real-time PCR and Western blotting.RESULTS:Collagen could promote cell viability of proliferation and migration(all P<0.05),and enhance the m RNA expression of integrinα2,integrinβ1,Rho A and ROCK1(all P<0.05).Opticin could inhibit proliferation and migration ability of hR VECs cultured in collagen,and reduce the mR NA expression of integrinα2,integrinβ1,RhoA and ROCK1(all P<0.05).CONCLUSION:Collagen and opticin can affect bioactivity of hR VECs,which may be regulated byα2-,β1-integrins and RhoA/ROCK1 signal pathway.展开更多
Objectives To ob-serve the effect of different estrogen levels on the secretory function of vascular endothelial cells of female rats, and study the effect of modulation of estrogen level on the expression of vascular...Objectives To ob-serve the effect of different estrogen levels on the secretory function of vascular endothelial cells of female rats, and study the effect of modulation of estrogen level on the expression of vascular cell adhesion molecule - 1 and the concentration of estrogen receptor in vascular endothelial cells. Methods Radioim-munology was used to measure the serum concentration of endothelin and PGI2, and copper - cadmium reduction was employed to measure the serum content of nitrogen monoxide. Radioligand binding and flowcy-tometry were used to measure the expression of estrogen receptor and vascular cell adhesion molecule (VCAM - 1) of vascular endothelial cells respectively. Results 1. The serum concentration of nitric oxide and PGI2 decreased when the ovaries of female rats were removed. In ovariectomized rats, given estrogen, the concentration rose ( P < 0. 05), but the plasma concentration of endothelin was adverse to it. 2. The concentration of estrogen receptor of vascular endothelial cells decreased remarkably when the ovaries of female rats were removed. When given estrogen, it increased. 3. The percent of expressed VCAM - 1 increased significantly after interleukin - 1βoperated on the cells, but 17 -βestradiol at 3 × 10-8 - 10-6 mol/l all decreased the percent. Conclusions Estrogen level can influence the secretion of nitrogen monoxide, PGI2 and endothlin of vascular endothelial cells, and also influence the concentration of estrogen receptor of vascular endothelial cells. 17 -β Estradiol at 3 × 10-8 -10-6 M can decrease the elevation of VCAM - 1 of vascular endothelial cells induced by interleukin - 1β.展开更多
Objective To study the effects of estrogen level and cholesterol - rich diet on the expression of estrogen receptor (ER) in cardiovascular tissues including vascular endothelial cells (VEC) of female rats. Methods The...Objective To study the effects of estrogen level and cholesterol - rich diet on the expression of estrogen receptor (ER) in cardiovascular tissues including vascular endothelial cells (VEC) of female rats. Methods The receptor binding assay (RBA) was adopted to measure the estrogen receptor level in aortic wall, heart and vascular endothelial cells of female rats on a cholesterol - rich diet. A ra-dioimmunoassay was employed to measure the level of serum estradiol. Results The number of ER significantly decreased in hearts, aorta and vascular endothelial cells in the ovariectomized rats and the rats on a cholesterol - rich diet. In contrast, the administration of estrogen somewhat restored the expression of ER. Conclusions For female rats, the level of estrogen affects the expression of ER in cardiovascular system. The number of ER decreases along with the decrease in the level of estrogen. A cholesterol - rich diet also can decrease the expression of ER in cardiovascular system of female rats.展开更多
Immune checkpoint blockade(ICB)has emerged as a promising immunotherapeutic modality against cancer in the clinic.However,only 10-30%of patients respond to ICB,primarily due to poor immunogenicity and insufficient T c...Immune checkpoint blockade(ICB)has emerged as a promising immunotherapeutic modality against cancer in the clinic.However,only 10-30%of patients respond to ICB,primarily due to poor immunogenicity and insufficient T cell infiltration in solid tumors.Herein,we presented an approach for high-performance cancer treatment using the programmed cell death protein-1 and programmed cell death ligand-1(PD-1/PD-L1)inhibitor(BMS-202)-loaded PEGylated graphene oxide(GPi).On the one hand,GPi dissociated tight junctions of vascular endothelial cells(VECs)in tumor,thus promoting the extravasation and intratumoral accumulation of liposomal doxorubicin(LipDox),which then effectively induced immunogenic cell death of tumor cells.On the other hand,GPi also stimulated VECs to upregulate the expression of cell-cell interaction molecules,such as intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1,which facilitated the infiltration of T cells in tumor.Beyond acting as a stimulator of VECs,GPi could exert responsive release of BMS-202 under the acidic tumor microenvironment and blockade PD-1/PD-L1 axis in tumors.Finally,the alternating administration of GPi and LipDox effectively inhibited tumor growth in a 4T1 tumor model,providing a novel treatment mode for chemo-immunotherapy.展开更多
Objective:The primary cause of microvascular disease in diabetic complications is long-term hyperglycemia,wherein the damage and apoptosis of vascular endothelial cells play a significant role.Sodium tanshinone IIA su...Objective:The primary cause of microvascular disease in diabetic complications is long-term hyperglycemia,wherein the damage and apoptosis of vascular endothelial cells play a significant role.Sodium tanshinone IIA sulfonate(STS)has been found to have beneficial effects on cardiovascular health.This study aimed to investigate the impact of STS on high glucose-induced apoptosis and oxidative stress damage in vascular endothelial cells,as well as its potential protective mechanisms.Methods:Human umbilical vein endothelial cells(HUVECs)were divided into five groups:low-glucose group,high-glucose group,and three STS groups(STS-a,STS-b,and STS-c).The low-glucose group was incubated with DMEM low-sugar medium containing 5.5 mmol·L-1glucose,while the high-glucose group was treated with 33.3mmol·L-1glucose.The STS groups were exposed to 10,30,and 50μg·m L-1of STS,respectively.Each group was cultured for 72 h,and the MTT method was utilized to assess cell proliferation.Additionally,flow cytometry was employed to monitor changes in cell apoptosis and cellular oxidative stress indicators at 24,48,and 72 h of cell culture in each group.Results:As time went on,the cell proliferation ability and apoptosis rate of each group gradually increased.The high-glucose group exhibited lower proliferation ability compared to the other groups.The STS-c group demonstrated the highest OD value for proliferation ability(24 h:1.19±0.12;48 h:1.20±0.13;72 h:1.25±0.12),but it was still lower than that of the low-sugar group.Notably,the high-glucose group had the highest cell apoptosis rate,while the low-glucose group had the lowest.The apoptosis rate of the STS-c group(24 h:8.02±0.13;48 h:10.10±0.12;72 h:13.18±0.11)%was between that of the low-glucose group and the high-glucose group,and lower than the STS-a and STS-b groups.Furthermore,the high-glucose group exhibited the highest malondialdehyde and nitric oxide synthase activities,as well as superoxide dismutase activity and nitric oxide levels,whereas the low-glucose group showed the opposite pattern.The oxidative stress damage-related indicators of cells in the three STS groups were between those of the high-glucose and low-glucose groups,with the STS-c group displaying the most significant changes.Conclusion:Tanshinone IIA has a potential therapeutic effect on high glucose-induced vascular injury by improving the oxidative stress state of vascular endothelial cells and reducing cell apoptosis,which suggests a new strategy for preventing and treating diabetes-related microangiopathy.展开更多
基金financially supported by Natural Science Foundation of Shandong Province(No.ZR2023QH037)Medical and Health Science and Technology Development Program of Shandong Province(No.202203010622)+1 种基金GuangDong Basic and Applied Basic Research Foundation(No.2020A1515111005)China Postdoctoral Science Foundation(No.2018M643053).
文摘Background:Xuefu Zhuyu decoction(XFZY)could significantly improve the function of hypertensive vascular endothelial cells,but the targets and mechanism are not clear.This study is to analyze the pharmacological substances and targets of Xuefu Zhuyu decoction in hypertensive vascular endothelial cells.Methods:This study used Xuefu Zhuyu decoction to intervene human umbilical vein endothelial cells incubated by hypertensive patients’serum,then detected the function of vascular endothelial cells.The aqueous extract of XFZY was analyzed and validated by liquid chromatography-mass spectrometry technology;Finally,macromolecular docking technology was used to analyze the potential active substances and targets of XFZY in the prevention and treatment of hypertension.Results:Compared with the model group,the XFZY group showed a significant increase in NO expression(P<0.01)and a significant decrease in ET-1 expression(P<0.001);and the expression of BIP,P-JNK,CHOP,and BAX in XFZY group cells was significantly decreased(P<0.001),while the expression of JNK and BCL2 was significantly increased(P<0.001).19 main compounds were identified in XFZY and there were 3 pairs of molecular complexes with high affinity for markers of the endoplasmic reticulum stress,including BIP-Hesperidin complex,BIP-HSYA complex and JNK-Naringin complex.Conclusion:This study analyzed the potential pharmacodynamic substance and targets of Xuefu Zhuyu decoction in improving the function of hypertensive vascular endothelial cells,which could provide a scientific basis for the future molecular mechanism of XFZY in treating hypertension.
文摘Objective: Study blood vessel injury and gene expression indicating vascular endothelial cell apoptosis induced by mannitol with and without administration of anti-oxidative vitamins. Methods: Healthy rabbits were randomly divided into four groups. Mannitol was injected into the vein of the rabbit ear in each animal. Pre-treatment prior to mannitol injection was per- formed with normal saline (group B), vitamin C (group C) and vitamin E (group D). Blood vessel injury was assessed under electron and light microscopy. In a second experiment, cell culture specimen of human umbilical vein endothelial cells were treated with mannitol. Pre-treatment was done with normal saline (sample B), vitamin C (sample C) and vitamin E (sample D). Total RNA was extracted with the original single step procedure, followed by hybridisation and analysis of gene expression. Results: In the animal experiment, serious blood vessel injury was seen in group A and group B. Group D showed light injury only, and normal tissue without pathological changes was seen in group C. Of all 330 apoptosis-related genes analysed in human cell culture specimen, no significant difference was seen after pre-treatment with normal saline, compared with the gene chip without pre-treatment. On the gene chip pre-treated with vitamin C, 45 apoptosis genes were down-regulated and 34 anti-apoptosis genes were up-regulated. Pre-treatment with vitamin E resulted in the down-regulation of 3 apoptosis genes. Conclusion: Vitamin C can protect vascular endothelial cells from mannitol-induced injury.
基金National Natural Science Foundation of China,No.81972074 (to XY)Natural Science Foundation of Tianjin,No.19JCZDJC34900 (to XY)National Key Research and Development Project of Stem Cell and Transformation Research,No.2019YFA0112100 (to SF)。
文摘Maintaining the integrity of the blood-spinal cord barrier is critical for the recove ry of spinal cord injury.Ferro ptosis contributes to the pathogenesis of spinal cord injury.We hypothesized that ferroptosis is involved in disruption of the blood-s pinal cord barrier.In this study,we administe red the ferroptosis inhibitor liproxstatin-1 intraperitoneally after contusive spinal co rd injury in rats.Liproxstatin-1 improved locomotor recovery and somatosensory evoked potential electrophysiological performance after spinal cord inju ry.Liproxstatin-1 maintained blood-spinal cord barrier integrity by upregulation of the expression of tight junction protein.Liproxstatin-1 inhibited ferroptosis of endothelial cell after spinal cord injury,as shown by the immunofluorescence of an endothelial cell marker(rat endothelium cell antigen-1,RECA-1) and fe rroptosis markers Acyl-CoA synthetase long-chain family member 4 and 15-lipoxygenase.Liproxstatin-1reduced brain endothelial cell ferroptosis in vitro by upregulating glutathione peroxidase 4 and downregulating Acyl-CoA synthetase long-chain family member4 and 15-lipoxygenase.Furthermore,inflammatory cell recruitment and astrogliosis were mitigated after liproxstatin-1 treatment.In summary,liproxstatin-1im proved spinal cord injury recovery by inhibiting ferroptosis in endothelial cells and maintaining blood-s pinal co rd barrier integrity.
基金supported by grants from the National Basic Research Program of China(No.2011CB503804)the National Natural Science Foundation of China(No.81372967)
文摘Summary: The contribution of particles to cardiovascular mortality and morbidity has been enlightened by epidemiologic and experimental studies. However, adverse biological effects of the particles with different sizes on cardiovascular cells have not been well recognized. In this study, sub-cultured human umbilical vein endothelial cells (HUVECs) were exposed to increasing concentrations of pure quartz particles (DQ) of three sizes (DQPM1, 〈1 μm; DQPM3-5, 3-5 μm; DQPM5, 5 μm) and carbon black particles of two sizes (CB0.1, 〈0.1 μm; CB 1, 〈 1 μm) for 24 h. Cytotoxicity was estimated by measuring the activity of lactate dehydrogenase (LDH) and cell viability. Nitric oxide (NO) generation and cyto- kines (TNF-α and IL-1β) releases were analyzed by using NO assay and enzyme-linked immunoabsorbent assay (ELISA), respectively. It was found that both particles induced adverse biological effects on HUVECs in a dose-dependent manner. The size of particle directly influenced the biological activity. For quartz, the smaller particles induced stronger cytotoxicity and higher levels of cytokine responses than those particles of big size. For carbon black particles, CB0.1 was more capable of inducing adverse responses on HUVECs than CB 1 only at lower particle concentrations, in contrast to those at higher concentrations. Meanwhile, our data also revealed that quartz particles performed stronger cell damage and produced higher levels of TNF-α than carbon black particles, even if particles size was similar. In conclusion, particle size as well as particle composition should be both considered in assessing vascular endothelial cells injury and inflammation responses induced by particles.
基金supported by grants from National Natural Science Foundation of China(No.81030021)National Basic Research Program of China(No.2011CB504403)
文摘Summary: Although previous reports showed dmg-eluting stent (DES) could effectively inhibit neointima formation, in-stent restenosis (ISR) remains an important obstacle. The purpose of this study was to investigate different effects of paclitaxel on proliferation and cell cycle regulators between vascular smooth muscle cells (VSMCs) and vascular endothelial cells (VECs) of rats in vitro. The cultured VSMCs and VECs of rats from the same tissues were examined by using immunohistochemistry, flow cytometry and Western blotting in control and paclitaxel-treated groups. The results showed paclitaxel could effectively inhibit proliferation of VSMCs and VECs. However, as compared with VECs, prolif- eration of VSMCs in paclitaxel-treated group decreased less rapidly. The percentage of cells in G0-G1 and G2-M phases was reduced, and that in S phase increased after treatment for 72 h. The expression of cyclin D1 and B1, p27 and PCNA in VSMCs of paclitaxel-treated group was up-regulated, but that of p21 down-regulated as compared with VECs. It is concluded that there are significant differences in the expression of cell cycle regulators and proliferation rate between paclitaxel-treated VSMCs and paclitaxel-treated VECs, suggesting that the G1 S checkpoint regulated by paclitaxel may play a critical role in the development of complications of DES, which provides new strategies for treatments of ISR.
文摘AIM: To evaluate the differential inhibitory effects of bevacizumab on cell proliferation of vascular endothelial growth factor (VEGF)-stimulated choroidal vascular endothelial cells (CVECs) and retinal vascular endothelial cells (RVECs) in vitro.METHODS: VEGF (400 ng/mL) enriched CVECs and RVECs were treated with escalating doses of bevacizumab (0.1, 0.5, 1, 1.5 and 2 mg/mL). Cell proliferation changes were analyzed with WST-1 assay and trypan blue exclusion assay at 48, 72h and 1wk. Morphological changes were recorded with bright field microscopy.RESULTS: VEGF enriched RVECs showed significantly more decline of cell viability than CVECs after bevacizumab treatment. One week after treatment, RVEC cell proliferation decreased by 29.7%, 37.5%, 52.8%, 35.9% and 45.6% at 0.1, 0.5, 1.0, 1.5 and 2 mg/mL bevacizumab respectively compared to CVEC proliferation decrease of 4.1%, 7.7%, 2.4%, 4.1% and 17.7% (P〈0.05) by WST-1 assay. Trypan blue exclusion assay also revealed similar decrease in RVEC proliferation of 20%, 60%, 73.3%, 80% and 93.3% compared to CVEC proliferation decrease of 4%, 12%, 22.9%, 16.7% and 22.2% respectively (P〈0.05). The maximum differential effect between the two cell types was observed at bevacizumab doses of 1.0 and 1.5 mg/mL at all time points. RVECs were 22 fold more sensitive (P〈0.01) compared to CVECs (52.8% vs 2.4%) at concentration of 1.0 mg/mL, and 8.7 fold more at 1.5 mg/mL (35.9% vs 4.1%) 1wk after treatment (P〈0.05 respectively).CONCLUSION: VEGF-enriched RVECs are more susceptible to bevacizumab inhibition than CVECs at clinically used dosage of 1.25 mg and this differential sensitivity between two cell types should be taken into consideration in dosage selection.
基金supported by the National Natural Science Foundation of China(No.81470418 and No.81770230)。
文摘Morphological and functional abnormalities of vascular endothelial cells(VECs) are risk factors of ischemiareperfusion in skin flaps.Signaling pathway mediated by interleukin-1 receptor(IL-1 R) is essential to hypoxia/reoxygenation(H/R) injury of VECs.While the TIR/BB-loop mimetic(AS-1) disrupts the interaction between IL-1 R and myeloid differentiation primary-response protein 88(MyD88),its role in the VECs dysfunction under H/R is unclear.In this study,we first showed that there was an infiltration of inflammatory cells and the apoptosis of VECs by using a skin flap section from patients who received flap transplantation.We then showed that the H/R treatment induced apoptosis and loss of cell migration of endothelial cell line H926 were attenuated by AS-1.Furthermore,our data suggested that AS-1 inhibits the interaction between IL-1 R and MyD88,and subsequent phosphorylation of IκB and p38 pathway,as well as the nuclear localization of NF-κB subunit p65/p50.Thus,this study indicated that the protective role of AS-1 in H/R induced cellular injury may be due to the AS-1 mediated down-regulation of IL-1 R signaling pathway.
基金Science and Technology Fund of Tianjin Eye Hospital(No.YKYB1905).
文摘AIM:To determine the effect of exosomes derived from human umbilical cord blood mesenchymal stem cells(hUCMSCs)on the expression of vascular endothelial growth factor A(VEGF-A)in human retinal vascular endothelial cells(HRECs).METHODS:Exosomes were isolated from hUCMSCs using cryogenic ultracentrifugation and characterized by transmission electron microscopy,Western blotting and nanoparticle tracking analysis.HRECs were randomly divided into a normal control group(group A),a high glucose model group(group B),a high glucose group with 25μg/mL(group C),50μg/mL(group D),and 100μg/mL exosomes(group E).Twenty-four hours after coculture,the cell proliferation rate was detected using flow cytometry,and the VEGF-A level was detected using immunofluorescence.After coculture 8,16,and 24h,the expression levels of VEGF-A in each group were detected using PCR and Western blots.RESULTS:The characteristic morphology(membrane structured vesicles)and size(diameter between 50 and 200 nm)were observed under transmission electron microscopy.The average diameter of 122.7 nm was discovered by nanoparticle tracking analysis(NTA).The exosomal markers CD9,CD63,and HSP70 were strongly detected.The proliferation rate of the cells in group B increased after 24h of coculture.Immunofluorescence analyses revealed that the upregulation of VEGF-A expression in HRECs stimulated by high glucose could be downregulated by cocultured hUCMSC-derived exosomes(F=39.03,P<0.01).The upregulation of VEGF-A protein(group C:F=7.96;group D:F=17.29;group E:F=11.89;8h:F=9.45;16h:F=12.86;24h:F=42.28,P<0.05)and mRNA(group C:F=4.137;group D:F=13.64;group E:F=22.19;8h:F=7.253;16h:F=16.98;24h:F=22.62,P<0.05)in HRECs stimulated by high glucose was downregulated by cocultured hUCMSC-derived exosomes(P<0.05).CONCLUSION:hUCMSC-derived exosomes downregulate VEGF-A expression in HRECs stimulated by high glucose in time and concentration dependent manner.
基金This study was supported by 973 Program of China (2002 CB 512905).
文摘Objective To study the possible intervention of isoflavones in cytotoxicity induced by cadmium in vascular endothelial cells. Methods An ECV 304 cell line derived from human umbilical vein endothelial cells was adopted. Genistein / daidzein was added prior to or simultaneously with CdCl2, cell viability was determined by MTT assay, and metallothionein mRNA expression was monitored by RT-PCR method. Results Cell viability was higher in isoflavone and CdCl2 co-treated groups than that in CdCl2 treated group, with CdCl2 concentration at 10, 20, 40, and 80 μmol/L, respectively. However this increase was not observed in the group treated with CdCl2 at a concentration of 60 μmol/L. Isoflavones (10-10 mol/L to 10-5 mol/L) were added 24 h before cells were challenged with 80 μmol/L CdCl2 for 24 h or simultaneously with 80 μmol/L CdCl2. Genistein increased cell viability only at 10-5 mol/L, while daidzein caused a dose-dependent increase from 10-10 mol/L to 10-5 mol/L in co-treatment with CdCl2. In pre-treatment, genistein (10-7 to 10-5 mol/L) increased cell viability whereas only 10-5 mol/L of daidzein exerted protection. Apparent protection could be found when the cells were pre-treated with 10-5 mol/L isoflavones for over 12 h, whereas 24 h incubation was required in such a co-treatment, with the exception of daidzein that had a significant protection in only 3 h. Isoflavones (10-6 mol/L) incubated for 3 h to 24 h, increased MT IIA and MT IF mRNA expression, but the induction could not last for more than 24 h. Co-treatment with isoflavones could induce an additional induction of MT IIA mRNA expression in cells exposed to cadmium. However, the additional induction of MT IIA and MT IF mRNA was not seen when pre-treatment was carried out with isoflavones, with the exception of an increase in MT IIA mRNA expression in the daidzein pre-treated group. Conclusion Genistein/daidzein could reverse the cytotoxicity of cadmium either in pre-treatment or in co-treatment. The protection is the strongest in 10-5 mol/L of isoflavones with a dose-dependent pattern. There are differences between genistein and daidzein in their protective effects. Whether the protection of isoflavones is related to their capacity of inducing MT mRNA expression remains to be elucidated.
基金supported by NUS Academic Research Fund (R-263-000-483-112)
文摘A new dynamic model for cell-deformation-induced adenosine triphosphate (ATP) release from vascular endothelial cells (VECs) is proposed in this paper to quantify the relationship between the ATP concentration at the surface of VECs and blood flow-induced shear stress. The simulation results demonstrate that ATP concentration at the surface of VECs predicted by the proposed new dynamic model is more consistent with the experimental observations than those by the existing static and dynamic models. Furthermore, it is the first time that a proportional-integral-derivative (PID) feedback controller is applied to modulate extracellular ATP concentration. Three types of desired ATP concentration profiles including constant, square wave and sinusoid are obtained by regulating the wall shear stress under this PID control. The systematic methodology utilized in this paper to model and control ATP release from VECs via adjusting external stimulus opens up a new scenario where quantitative investigations into the underlying mechanisms for many biochemical phenomena can be carded out for the sake of controlling specific cellular events.
基金the National Natural Science Foundation of China(No.10472027) the NUS Academic Research Fund(No.R-263-000-483-112)
文摘In consideration of the mechanism for shear-stress-induced Ca^2+ influx via ATP(adenosine triphosphate)-gated ion channel P2X4 in vascular endothelial cells, a modified model is proposed to describe the shear-stress-induced Ca^2+ influx. It is affected both by the Ca^2+ gradient across the cell membrane and extracellular ATP concentration on the cell surface. Meanwhile, a new static ATP release model is constructed by using published experimental data. Combining the modified intracellular calcium dynamics model with the new ATP release model, we establish a nonlinear Ca^2+ dynamic system in vascular endothelial cells. The ATP-mediated calcium response in vascular endothelial cells subjected to shear stresses is analyzed by solving the governing equations of the integrated dynamic system. Numerical results show that the shear-stress-induced calcium response predicted by the proposed model is more consistent with the experimental observations than that predicted by existing models.
基金the National Natural Science Foundation of China,No.81670951.
文摘Stem cell medicine is gaining momentum in the development of therapy for various end-stage diseases.The search for new seed cells and exploration of their application prospects are topics of interest in stem cell medicine.In recent years,vascular endothelial cells(VECs)have attracted wide attention from scholars.VECs,which form the inner lining of blood vessels,are critically involved in many physiological functions,including permeability,angiogenesis,blood pressure regulation,immunity,and pathological development,such as atherosclerosis and malignant tumors.VECs have significant therapeutic effects and broad application prospects in stem cell medicine for the treatment of various refractory diseases,including atherosclerosis,myocardial infarction,diabetic complications,hypertension,coronavirus disease 2019,and malignant tumors.On the one hand,VECs and their extracellular vesicles can be directly used for the treatment of these diseases.On the other hand,VECs can be used as therapeutic targets for some diseases.However,there are still some obstacles to the use of VECs in stem cell medicine.In this review,advances in the applications and challenges that come with the use of these cells are discussed.
基金supported by the following funds:1.Medical Scientific Research Foundation of Guangdong Province(A2022221)Natural Science Foundation of Guangdong Province(2019A1515011417)+2 种基金National Natural Science Foundation of China(81970806,82271094)Science and Technology Projects in Guangzhou(202201020030,202201020015)Guangdong High-Level Hospital Construction Fund(ynkt2021-zz16).
文摘Objective:This study aimed to investigate the potential of human umbilical cord mesenchymal stem cell(hucMSC)-derived exosomes(hucMSC-Exos)in inhibiting hypoxia-induced cell hyper proliferation and overexpression of vascular endothelial growth factor A(VEGF-A)in immature human fetal retinal microvascular endothelial cells(hfRMECs).Methods:Exosomes were isolated from hucMSCs using cryogenic ultracentrifugation and characterized through various techniques,including transmission electron microscopy,nanoparticle tracking analysis,bicinchoninic acid assays,and western blotting.The hfRMECs were identified using von Willebrand factor(vWF)co-staining and divided into four groups:a control group cultured under normoxic condition,a hypoxic model group,a hypoxic group treated with low-concentration hucMSC-Exos(75μg/mL)and a hypoxic group treated with high-concentration hucMSC-Exos(100μg/mL).Cell viability and proliferation were assessed using Cell Counting Kit-8(CCK-8)assay and EdU(5-ethynyl-2′-deoxyuridine)assay respectively.Expression levels of VEGF-A were evaluated using RT-PCR,western blotting and immunofluorescence.Results:Hypoxia significantly increased hfRMECs’viability and proliferation by upregulating VEGF-A levels.The administration of hucMSC-Exos effectively reversed this response,with the high-concentration group exhibiting greater efficacy compared to the lowconcentration group.Conclusion:In conclusion,hucMSC-Exos can dose-dependently inhibit hypoxia-induced hyperproliferation and VEGF-A overexpression in immature fetal retinal microvascular endothelial cells.
基金Supported by National Natural Science Fundation of China(No.81000387)
文摘AIMTo determine whether small interfering RNA (siRNA) of PGC-1α could inhibit vascular endothelial growth factor (VEGF) expression and tube formation in human retinal vascular endothelial cells (hRVECs).METHODShRVECs transfected with peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) siRNA were incubated for 24h and then placed into a normoxic (20%, O<sub>2</sub>) or hypoxic (1%, O<sub>2</sub>) environment for another 16h. PGC-1α mRNA and protein levels were detected by real-time PCR and Western blot. VEGF mRNA and protein levels were detected by real-time PCR and ELISA. Cell proliferation was evaluated by BrdU incorporation assay. Forty-eight hours after siRNA transfection, hRVECs were planted into Matrigel-coated plates and cultured under normoxic (20%, O<sub>2</sub>) or hypoxic (1%, O<sub>2</sub>) conditions for another 48h. The tube formation of hRVECs was observed under an optical microscope and quantified by counting the number of branch points and calculating the total tube length.RESULTSPGC-1α mRNA and protein levels were significantly reduced by PGC-1α siRNA, and VEGF mRNA and protein levels also decreased significantly. The percentage of BrdU-labeled cells in siPGC-1α groups were significantly decreased compared with control siRNA groups under normoxia and hypoxia in cell proliferation assay. In the tube formation assay, PGC-1α siRNA treated cells formed significantly fewer tubes.CONCLUSIONBlocking PGC-1α expression can inhibit VEGF expression in hRVECs and inhibit their ability to form tubes under both normoxic and hypoxic conditions.
文摘After organ transplantation, rapid repair of injured vascular endothelial cell (VEC) is a key to prevent graft chronic dysfunction besides control of immunological rejection. Many studies have confirmed that vascular endothelial growth factor 165 (VEGF165) could accelerate the repair of VEC injury, decrease thrombosis and thrombotic occlusion, and inhibit hyperplasia of the intima. This study was designed to construct eukaryotic expression plasmid pBudCE4.1/VEGF165, and observe its effect on the prolife ration of VEC. METHODS:The VEGF165 gene cloned from human heart tissue by RT-PCR was cloned into eukaryotic expression plasmid pBudCE4.1. The recombinant expression plasmid pBudCE4.1/VEGF165 was identified by restriction enzyme (Hind III and BamH I) digestion analysis, and was sequenced. The pBudCE4.1/VEGF165 was introduced into VEC through lipofection transfection. The VEGF165 mRNA expression by Northern blot and VEGF165 protein expression was detected by immunocytochemical staining. The effect of expression protein on VEC proliferation was detected by flow cytometry. RESULTS:The RT-PCR product of the VEGF165 gene was about 576bp. Sequencing analysis revealed that the sequence of the amplified VEGF165 gene was identical with that in GenBank. Restrictive enzyme digestion analysis showed that recombinant expression plasmid pBudCE4.1/ tVEGF165 had been constructed successfully. The expression of VEGF165 at mRNA and protein levels in the transformed VSMCs had been demonstrated by Northern blot and immunocytochemical staining respectively. The expressed product of VEGF165 could notably accelerate the proliferation of VECs. CONCLUSIONS:pBudCE4.1/VEGF165 is successfully cons- tructed and is expressed in VECs. Expressed VEGF165 can accelerate the VEC proliferation. The present study has laid a foundation for potential use of VEGF165 gene transfection to prevent and treat vascular stenosis in the transplanted organ.
基金Supported by Natural Science Foundation of Guangdong Province(No.2016A030313364)Project of Administration of Traditional Chinese Medicine of Guangdong Province of China(No.20201065)。
文摘AIM:To investigate the effects of collagen and opticin on the bioactivity of human retinal vascular endothelial cells(hR VECs),and explore its regulations by integrins and RhoA/ROCK1 signal pathway.METHODS:h RVECs were cultured in collagen and treated by opticin,and cell-based bioactivity assays of cell proliferation,migration,and adhesion were performed.The expression of integrinα2,integrinβ1,Rho A and ROCK1 were examined with real-time PCR and Western blotting.RESULTS:Collagen could promote cell viability of proliferation and migration(all P<0.05),and enhance the m RNA expression of integrinα2,integrinβ1,Rho A and ROCK1(all P<0.05).Opticin could inhibit proliferation and migration ability of hR VECs cultured in collagen,and reduce the mR NA expression of integrinα2,integrinβ1,RhoA and ROCK1(all P<0.05).CONCLUSION:Collagen and opticin can affect bioactivity of hR VECs,which may be regulated byα2-,β1-integrins and RhoA/ROCK1 signal pathway.
文摘Objectives To ob-serve the effect of different estrogen levels on the secretory function of vascular endothelial cells of female rats, and study the effect of modulation of estrogen level on the expression of vascular cell adhesion molecule - 1 and the concentration of estrogen receptor in vascular endothelial cells. Methods Radioim-munology was used to measure the serum concentration of endothelin and PGI2, and copper - cadmium reduction was employed to measure the serum content of nitrogen monoxide. Radioligand binding and flowcy-tometry were used to measure the expression of estrogen receptor and vascular cell adhesion molecule (VCAM - 1) of vascular endothelial cells respectively. Results 1. The serum concentration of nitric oxide and PGI2 decreased when the ovaries of female rats were removed. In ovariectomized rats, given estrogen, the concentration rose ( P < 0. 05), but the plasma concentration of endothelin was adverse to it. 2. The concentration of estrogen receptor of vascular endothelial cells decreased remarkably when the ovaries of female rats were removed. When given estrogen, it increased. 3. The percent of expressed VCAM - 1 increased significantly after interleukin - 1βoperated on the cells, but 17 -βestradiol at 3 × 10-8 - 10-6 mol/l all decreased the percent. Conclusions Estrogen level can influence the secretion of nitrogen monoxide, PGI2 and endothlin of vascular endothelial cells, and also influence the concentration of estrogen receptor of vascular endothelial cells. 17 -β Estradiol at 3 × 10-8 -10-6 M can decrease the elevation of VCAM - 1 of vascular endothelial cells induced by interleukin - 1β.
文摘Objective To study the effects of estrogen level and cholesterol - rich diet on the expression of estrogen receptor (ER) in cardiovascular tissues including vascular endothelial cells (VEC) of female rats. Methods The receptor binding assay (RBA) was adopted to measure the estrogen receptor level in aortic wall, heart and vascular endothelial cells of female rats on a cholesterol - rich diet. A ra-dioimmunoassay was employed to measure the level of serum estradiol. Results The number of ER significantly decreased in hearts, aorta and vascular endothelial cells in the ovariectomized rats and the rats on a cholesterol - rich diet. In contrast, the administration of estrogen somewhat restored the expression of ER. Conclusions For female rats, the level of estrogen affects the expression of ER in cardiovascular system. The number of ER decreases along with the decrease in the level of estrogen. A cholesterol - rich diet also can decrease the expression of ER in cardiovascular system of female rats.
文摘Immune checkpoint blockade(ICB)has emerged as a promising immunotherapeutic modality against cancer in the clinic.However,only 10-30%of patients respond to ICB,primarily due to poor immunogenicity and insufficient T cell infiltration in solid tumors.Herein,we presented an approach for high-performance cancer treatment using the programmed cell death protein-1 and programmed cell death ligand-1(PD-1/PD-L1)inhibitor(BMS-202)-loaded PEGylated graphene oxide(GPi).On the one hand,GPi dissociated tight junctions of vascular endothelial cells(VECs)in tumor,thus promoting the extravasation and intratumoral accumulation of liposomal doxorubicin(LipDox),which then effectively induced immunogenic cell death of tumor cells.On the other hand,GPi also stimulated VECs to upregulate the expression of cell-cell interaction molecules,such as intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1,which facilitated the infiltration of T cells in tumor.Beyond acting as a stimulator of VECs,GPi could exert responsive release of BMS-202 under the acidic tumor microenvironment and blockade PD-1/PD-L1 axis in tumors.Finally,the alternating administration of GPi and LipDox effectively inhibited tumor growth in a 4T1 tumor model,providing a novel treatment mode for chemo-immunotherapy.
文摘Objective:The primary cause of microvascular disease in diabetic complications is long-term hyperglycemia,wherein the damage and apoptosis of vascular endothelial cells play a significant role.Sodium tanshinone IIA sulfonate(STS)has been found to have beneficial effects on cardiovascular health.This study aimed to investigate the impact of STS on high glucose-induced apoptosis and oxidative stress damage in vascular endothelial cells,as well as its potential protective mechanisms.Methods:Human umbilical vein endothelial cells(HUVECs)were divided into five groups:low-glucose group,high-glucose group,and three STS groups(STS-a,STS-b,and STS-c).The low-glucose group was incubated with DMEM low-sugar medium containing 5.5 mmol·L-1glucose,while the high-glucose group was treated with 33.3mmol·L-1glucose.The STS groups were exposed to 10,30,and 50μg·m L-1of STS,respectively.Each group was cultured for 72 h,and the MTT method was utilized to assess cell proliferation.Additionally,flow cytometry was employed to monitor changes in cell apoptosis and cellular oxidative stress indicators at 24,48,and 72 h of cell culture in each group.Results:As time went on,the cell proliferation ability and apoptosis rate of each group gradually increased.The high-glucose group exhibited lower proliferation ability compared to the other groups.The STS-c group demonstrated the highest OD value for proliferation ability(24 h:1.19±0.12;48 h:1.20±0.13;72 h:1.25±0.12),but it was still lower than that of the low-sugar group.Notably,the high-glucose group had the highest cell apoptosis rate,while the low-glucose group had the lowest.The apoptosis rate of the STS-c group(24 h:8.02±0.13;48 h:10.10±0.12;72 h:13.18±0.11)%was between that of the low-glucose group and the high-glucose group,and lower than the STS-a and STS-b groups.Furthermore,the high-glucose group exhibited the highest malondialdehyde and nitric oxide synthase activities,as well as superoxide dismutase activity and nitric oxide levels,whereas the low-glucose group showed the opposite pattern.The oxidative stress damage-related indicators of cells in the three STS groups were between those of the high-glucose and low-glucose groups,with the STS-c group displaying the most significant changes.Conclusion:Tanshinone IIA has a potential therapeutic effect on high glucose-induced vascular injury by improving the oxidative stress state of vascular endothelial cells and reducing cell apoptosis,which suggests a new strategy for preventing and treating diabetes-related microangiopathy.