目的:研究胎猪脱细胞主动脉(decellularized aorta of fetal pigs,DAFP)的生物相容性,确定其是否有作为支架材料用于小口径组织工程血管移植的潜力。方法:利用胰酶和核酸酶联合的脱细胞方法来制备胎猪主动脉脱细胞基质(DAFP),将其作为...目的:研究胎猪脱细胞主动脉(decellularized aorta of fetal pigs,DAFP)的生物相容性,确定其是否有作为支架材料用于小口径组织工程血管移植的潜力。方法:利用胰酶和核酸酶联合的脱细胞方法来制备胎猪主动脉脱细胞基质(DAFP),将其作为小口径组织工程血管的生物支架材料移植在成年犬单侧颈总动脉处,并监测其移植处的血流通畅情况,后期又通过组织学染色观察组织工程血管的组织学结构;扫描电镜观察血管的内表面结构;透射电镜观察其内表面的内皮细胞再生情况。结果:组织学染色结果表明构建的小口径组织工程血管具有完整的内膜层及中膜层结构;扫描电镜结果显示组织工程血管内表面覆盖着完整的内皮细胞层。结论:DAFP有作为小直径组织工程血管支架用于体内移植的潜力。展开更多
The nerves of the peripheral nervous system are not able to effectively regenerate in cases of severe neural injury.This can result in debilitating consequences,including morbidity and lifelong impairments affecting t...The nerves of the peripheral nervous system are not able to effectively regenerate in cases of severe neural injury.This can result in debilitating consequences,including morbidity and lifelong impairments affecting the quality of the patient’s life.Recent findings in neural tissue engineering have opened promising avenues to apply fibrous tissue-engineered scaffolds to promote tissue regeneration and functional recovery.These scaffolds,known as neural scaffolds,are able to improve neural regeneration by playing two major roles,namely,by being a carrier for transplanted peripheral nervous system cells or biological cues and by providing structural support to direct growing nerve fibers towards the target area.However,successful implementation of scaffold-based therapeutic approaches calls for an appropriate design of the neural scaffold structure that is capable of up-and down-regulation of neuron-scaffold interactions in the extracellular matrix environment.This review discusses the main challenges that need to be addressed to develop and apply fibrous tissue-engineered scaffolds in clinical practice.It describes some promising solutions that,so far,have shown to promote neural cell adhesion and growth and a potential to repair peripheral nervous system injuries.展开更多
文摘目的:研究胎猪脱细胞主动脉(decellularized aorta of fetal pigs,DAFP)的生物相容性,确定其是否有作为支架材料用于小口径组织工程血管移植的潜力。方法:利用胰酶和核酸酶联合的脱细胞方法来制备胎猪主动脉脱细胞基质(DAFP),将其作为小口径组织工程血管的生物支架材料移植在成年犬单侧颈总动脉处,并监测其移植处的血流通畅情况,后期又通过组织学染色观察组织工程血管的组织学结构;扫描电镜观察血管的内表面结构;透射电镜观察其内表面的内皮细胞再生情况。结果:组织学染色结果表明构建的小口径组织工程血管具有完整的内膜层及中膜层结构;扫描电镜结果显示组织工程血管内表面覆盖着完整的内皮细胞层。结论:DAFP有作为小直径组织工程血管支架用于体内移植的潜力。
基金supported by a Garnett-Passe and Rodney Williams Memorial Foundation grant(to JE)a National Health and Medical Research Council grant,No.APP1183799(to JASJ and JAKE).
文摘The nerves of the peripheral nervous system are not able to effectively regenerate in cases of severe neural injury.This can result in debilitating consequences,including morbidity and lifelong impairments affecting the quality of the patient’s life.Recent findings in neural tissue engineering have opened promising avenues to apply fibrous tissue-engineered scaffolds to promote tissue regeneration and functional recovery.These scaffolds,known as neural scaffolds,are able to improve neural regeneration by playing two major roles,namely,by being a carrier for transplanted peripheral nervous system cells or biological cues and by providing structural support to direct growing nerve fibers towards the target area.However,successful implementation of scaffold-based therapeutic approaches calls for an appropriate design of the neural scaffold structure that is capable of up-and down-regulation of neuron-scaffold interactions in the extracellular matrix environment.This review discusses the main challenges that need to be addressed to develop and apply fibrous tissue-engineered scaffolds in clinical practice.It describes some promising solutions that,so far,have shown to promote neural cell adhesion and growth and a potential to repair peripheral nervous system injuries.