期刊文献+
共找到3,453篇文章
< 1 2 173 >
每页显示 20 50 100
Tissue optical clearing enhances efficacy of vascular targeted photodynamic therapy of mouse dorsal skin
1
作者 Ying Liu Qiushi Wang +5 位作者 Yidi Liu Ying Wang Haixia Qiu Dan Zhu Ying Gu Defu Chen 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第2期67-78,共12页
Vascular-targeted photodynamic therapy(V-PDT)is an effective treatment for port wine stains(PWS).However,repeated treatment is usually needed to achieve optimal treatment outcomes,possibly due to the limited treatment... Vascular-targeted photodynamic therapy(V-PDT)is an effective treatment for port wine stains(PWS).However,repeated treatment is usually needed to achieve optimal treatment outcomes,possibly due to the limited treatment light penetration depth in the PWS lesion.The optical clearing technique can increase light penetration in depth by reducing light scattering.This study aimed to investigate the V-PDT in combination with an optical clearing agent(OCA)for the therapeutic enhancement of V-PDT in the rodent skinfold window chamber model.Vascular responses were closely monitored with laser speckle contrast imaging(LSCI),optical coherence tomography angiography,and stereo microscope before,during,and after the treatment.We further quantitatively demonstrated the effects of V-PDT in combination with OCA on the blood flow and blood vessel size of skin microvasculature.The combination of OCA and V-PDT resulted in significant vascular damage,including vasoconstriction and the reduction of blood flow.Our results indicate the promising potential of OCA for enhancing V-PDT for treating vascular-related diseases,including PWS. 展开更多
关键词 vascular-targeted photodynamic therapy(V-PDT) optical clearing agent(OCA) treatment efficacy enhancement skin-fold window chamber port wine stains
下载PDF
Erectile function after WSTll vascular-targeted photodynamic therapy for low-risk prostate cancer treatment 被引量:1
2
作者 Samuel Chelly Pierre Maulaz +2 位作者 Pierre Bigot Abdel Rahmene Azzouzi Souhil Lebdai 《Asian Journal of Andrology》 SCIE CAS CSCD 2020年第5期454-458,共5页
Vascular-targeted photodynamic therapy(VTP)using padeliporfin is currently assessed as a low-risk prostate cancer(LRPCa)treatment.The aim of this study was to assess erectile function outcomes of VTP for LRPCa treatme... Vascular-targeted photodynamic therapy(VTP)using padeliporfin is currently assessed as a low-risk prostate cancer(LRPCa)treatment.The aim of this study was to assess erectile function outcomes of VTP for LRPCa treatment.We prospectively included all patients treated with VTP for LRPCa.The primary endpoint was the post-treatment International Index of Erectile Function score(IIEF5 score)evolution(at 6 months,12 months,and then every year for 5 years).Secondary endpoints were the need of erectile dysfunction(ED)treatment and its efficacy.Eighty-two men were included.The median follow-up was 68(range:6-89)months.There was a 3-point significant decrease in the median IIEF5 score between baseline and at 6 months post-VTP(23[range:1-25]vs 20[range:1-25],P=0.005).There was a 1-point decrease at 1 year and 2 years post-VTP compared to baseline(22[range:2-25]and 22[range:0-25],P<0.005).There was no significant difference at 3,4,and 5 years compared to baseline.Twenty-seven(32.9%)patients received ED treatment:phosphodiesterase type-5 inhibitors(PDEI5;n=18),intracavernous injections(ICI;n=9),and intra-urethral gel(n=1).The median IIEF5 score statistically significantly increased after ED treatment(7[range:0-24]vs 21[range:1-25],P<0.001).ED treatment was efficient for 75%of the patients.There was no statistically significant difference between IIEF5 score at baseline and after ED treatment(P=0.443).Forty-six patients were totally potent before VTP and among them,13 needed ED treatment post-VTP with a success rate of 69.2%.VTP induced minimal changes in erectile function with a 3-point and a 1-point reduction in the IIEF5 score at 6 months and at 1 year,respectively.When required,ED treatment was efficient. 展开更多
关键词 erectile function focal therapy padeliporfin photodynamic therapy prostatic neoplasms
原文传递
Design of a nanozyme-based magnetic nanoplatform to enhance photodynamic therapy and immunotherapy
3
作者 Chen Bai Jiajing Liu +4 位作者 Luyao Bai Dapeng Yao Xiaofeng Li Haoran Zhang Dong Guo 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第9期1320-1329,共10页
The tumor microenvironment, particularly the hypoxic property and glutathione (GSH) overexpression, substantially inhibits the efficacy of cancer therapy. In this article, we present the design of a magnetic nanoplatf... The tumor microenvironment, particularly the hypoxic property and glutathione (GSH) overexpression, substantially inhibits the efficacy of cancer therapy. In this article, we present the design of a magnetic nanoplatform (MNPT) comprised of a photosensitizer (Ce6) and an iron oxide (Fe3O4)/manganese oxide (MnO2) composite nanozyme. Reactive oxygen species (ROS), such as singlet oxygen (1O2) radicals produced by light irradiation and hydroxyl radicals (·OH) produced by catalysis, are therapeutic species. These therapeutic substances stimulate cell apoptosis by increasing oxidative stress. This apoptosis then triggers the immunological response, which combines photodynamic therapy and T-cell-mediated immunotherapy to treat cancer. Furthermore, MNPT can be utilized as a contrast agent in magnetic resonance and fluorescence dual-modality imaging to give real-time tracking and feedback on treatment. 展开更多
关键词 Nanozyme photodynamic therapy Tumor microenvironment IMMUNOtherapy Dual-mode tomography
下载PDF
Deep near infrared light-excited stable synergistic photodynamic and photothermal therapies based on P-IR890 nano-photosensitizer constructed via a non-cyanine dye
4
作者 Dawei Jiang Chao Chen +12 位作者 Peng Dai Caiyan Li Zhiyi Feng Na Dong Fenzan Wu Junpeng Xu PingWu Liuxi Chu Shengcun Li Xiaokun Li Youjun Yang Weian Zhang Zhouguang Wang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第5期152-165,共14页
The cyanine dyes represented by IR780 can achieve synergistic photodynamic therapy(PDT)and photothermal therapy(PTT)under the stimulation of near-infrared(NIR)light(commonly 808 nm).Unfortunately,the stability of NIR-... The cyanine dyes represented by IR780 can achieve synergistic photodynamic therapy(PDT)and photothermal therapy(PTT)under the stimulation of near-infrared(NIR)light(commonly 808 nm).Unfortunately,the stability of NIR-excited cyanine dyes is not satisfactory.These cyanine dyes can be attacked by self-generated reactive oxygen species(ROS)during PDT processes,resulting in structural damage and rapid degradation,which is fatal for phototherapy.To address this issue,a novel non-cyanine dye(IR890)was elaborately designed and synthesized by our team.The maximum absorption wavelength of IR890 was located in the deep NIR region(ca.890 nm),which was beneficial for further improving tissue penetration depth.Importantly,IR890 exhibited good stability when continuously illuminated by deep NIR light.To improve the hydrophilicity and biocompatibility,the hydrophobic IR890 dye was grafted onto the side chain of hydrophilic polymer(POEGMA-b-PGMA-g-C≡CH)via click chemistry.Then,the synthesized POEGMA-b-PGMA-g-IR890 amphiphilic polymerwas utilized to prepare P-IR890 nano-photosensitizer via self-assembly method.Under irradiation with deep NIR light(850 nm,0.5 W/cm^(2),10 min),the dye degradation rate of P-IR890 was less than 5%.However,IR780 was almost completely degraded with the same light output power density and irradiation duration.In addition,P-IR890 could stably generate a large number of ROS and heat at the same time.It was rarely reported that the stable synergistic combination therapy of PDT and PTT could be efficiently performed by a single photosensitizer via irradiation with deep NIR light.P-IR890 exhibited favorable anti-tumor outcomes through apoptosis pathway.Therefore,the P-IR890 could provide a new insight into the design of photosensitizers and new opportunities for synergistic combination therapy of PDT and PTT. 展开更多
关键词 photodynamic therapy Photothermal therapy IR780 Non-cyanine dye Deep near infrared light
下载PDF
Alkyl chain length-regulated in situ intelligent nano-assemblies with AIE-active photosensitizers for photodynamic cancer therapy
5
作者 Lingyi Shen Qilong Zhang +11 位作者 Yongchao Yao Yali Huang Zhichang Zheng Ming Li Hong Xu Lin Tan Xukun Liao Binyi Xia Lin Li Carl Redshaw Yang Bai Chengli Yang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第6期84-100,共17页
Photodynamic therapy(PDT)brings new hope for the treatment of breast cancer due to few side effects and highly effective cell killing;however,the low bioavailability of traditional photosensitizers(PSs)and their depen... Photodynamic therapy(PDT)brings new hope for the treatment of breast cancer due to few side effects and highly effective cell killing;however,the low bioavailability of traditional photosensitizers(PSs)and their dependence on oxygen severely limits their application.Aggregation-induced emission(AIE)PSs can dramatically facilitate the photosensitization effect,which can have positive impacts on tumor PDT.To-date,most AIE PSs lack tumor targeting capability and possess poor cell delivery,resulting in their use in large quantities that are harmful to healthy tissues.In this study,a series of AIE PSs based on pyridinium-substituted triphenylamine salts(TTPAs 1-6)with different alkyl chain lengths are synthesized.Results reveal that TTPAs 1-6 promote the generation of type I and II ROS,including·OH and 1O_(2).In particular,the membrane permeability and targeting of TTPAs 4-6 bearing C8-C10 side-chains are higher than TTPAs 1-3 bearing shorter alkyl chains.Additionally,they can assemble with albumin,thereby forming nanoparticles(TTPA 4-6 NPs)in situ in blood,which significantly facilitates mitochondrial-targeting and strong ROS generation ability.Moreover,the TTPA 4-6 NPs are pH-responsive,allowing for increased accumulation or endocytosis of the tumor and enhancing the imaging or therapeutic effect.Therefore,the in vivo distributions of TTPA 4-6 NPs are visually enriched in tumor sites and exhibited excellent PDT efficacy.This work demonstrates a novel strategy for AIE PDT and has the potential to play an essential role in clinical applications using nano-delivery systems. 展开更多
关键词 Aggregation-induced emission PHOTOSENSITIZERS photodynamic therapy ROS generation Self-assembled nanoparticles
下载PDF
Light/pH dual controlled drug release"nanocontainer"alleviates tumor hypoxia for synergistic enhanced chemotherapy,photodynamic therapy and chemodynamic therapy
6
作者 Shihe Liu Xin Zhang +8 位作者 Zhimin Bai Yibo Yang Jia Zhang Kun Li Zhiwei Liu Ming Shi Lixin Dong Jidong Wang Jian Li 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第6期955-971,共17页
Photodynamic therapy(PDT)has significant advantages in treating primary tumors.However,the hypoxic tumor microenvironment hinders the generation of sufficient reactive oxygen species during PDT to effectively kill tum... Photodynamic therapy(PDT)has significant advantages in treating primary tumors.However,the hypoxic tumor microenvironment hinders the generation of sufficient reactive oxygen species during PDT to effectively kill tumor cells,further greatly limiting the applications of PDT in cancer treatment.Herein,we reported a temperature/pH dual controlled drug delivery system LPC@PCN@PDA/Fe^(3+)-AS1411 based on a porous coordination network(PCN(Mn))coated with polydopamine(PDA)and modified with an aptamer AS1411.β-lapachone(LPC)was loaded inside the PCN(Mn)framework,and Fe^(3+)was attached to the surface of the PDA coating.These nanoparticles(NPs)exhibited excellent multimodal cancer therapeutic effects and tumor targeting ability with their photo-and chemodynamic properties.The therapeutic effect can be enhanced by the production of sufficient oxygen by the internal hydrogen peroxide,which improves the photodynamic effect of the photosensitizer PCN(Mn)and the chemotherapy effect ofβ-lapachone.Notably,the conversion of Fe^(2+)to Fe^(3+)in the tumor cells exerts the Fenton effect,which generates hydroxyl radicals that cause lipid peroxidation in tumor cells and induce apoptosis,thus enhancing the chemodynamic therapeutic effect.In vitro and in vivo experiments revealed that the NPs demonstrated specific tumor targeting,excellent inhibition effect on tumor growth,and biocompatibility.Together,our findings can help develop an intelligent multifunctional therapeutic nanoplatform for cancer therapy. 展开更多
关键词 Porous coordination network(Mn)framework PHOTOtherapy photodynamic therapy Chemodynamic therapy Fenton effect
下载PDF
NIR-triggered on-site NO/ROS/RNS nanoreactor:Cascade-amplified photodynamic/photothermal therapy with local and systemic immune responses activation
7
作者 Ziqing Xu Yakun Kang +9 位作者 Jie Zhang Jiajia Tang Hanyao Sun Yang Li Doudou He Xuan Sha Yuxia Tang Ziyi Fu Feiyun Wu Shouju Wang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第6期58-73,共16页
Photothermal and photodynamic therapies(PTT/PDT)hold promise for localized tumor treatment,yet their full potential is hampered by limitations such as the hypoxic tumor microenvironment and inadequate systemic immune ... Photothermal and photodynamic therapies(PTT/PDT)hold promise for localized tumor treatment,yet their full potential is hampered by limitations such as the hypoxic tumor microenvironment and inadequate systemic immune activation.Addressing these challenges,we present a novel near-infrared(NIR)-triggered RNS nanoreactor(PBNO-Ce6)to amplify the photodynamic and photothermal therapy efficacy against triple-negative breast cancer(TNBC).The designed PBNOCe6 combines sodium nitroprusside-doped Prussian Blue nanoparticles with Chlorin e6 to enable on-site RNS production through NIR-induced concurrent NO release and ROS generation.This not only enhances tumor cell eradication but also potentiates local and systemic antitumor immune responses,protecting mice from tumor rechallenge.Our in vivo evaluations revealed that treatment with PBNO-Ce6 leads to a remarkable 2.7-fold increase in cytotoxic T lymphocytes and a 62%decrease in regulatory T cells in comparison to the control PB-Ce6(Prussian Blue nanoparticles loaded with Chlorin e6),marking a substantial improvement over traditional PTT/PDT.As such,the PBNO-Ce6 nanoreactor represents a transformative approach for improving outcomes in TNBC and potentially other malignancies affected by similar barriers. 展开更多
关键词 photothermal therapy photodynamic therapy nitric oxide reactive nitrogen species triple-negative breast cancer immune response NANOREACTOR
下载PDF
Antitumor effects of a novel photosensitizer-mediated photodynamic therapy and its influence on the cell transcriptome
8
作者 JINGJING CHEN DAN WANG +5 位作者 ZEQUN WANG MENGYUAN HAN HOUQING YIN WENTING ZHOU RIBAI YAN YAN PAN 《Oncology Research》 SCIE 2024年第5期911-923,共13页
Photodynamic therapy(PDT)is a promising cancer treatment.This study investigated the antitumor effects and mechanisms of a novel photosensitizer meso-5-[ρ-diethylene triamine pentaacetic acid-aminophenyl]−10,15,20-tr... Photodynamic therapy(PDT)is a promising cancer treatment.This study investigated the antitumor effects and mechanisms of a novel photosensitizer meso-5-[ρ-diethylene triamine pentaacetic acid-aminophenyl]−10,15,20-triphenyl-porphyrin(DTP)mediated PDT(DTP-PDT).Cell viability,reactive oxygen species(ROS),and apoptosis were measured with a Cell Counting Kit-8 assay,DCFH-DA fluorescent probe,and Hoechst staining,respectively.Cell apoptosis-and autophagy-related proteins were examined using western blotting.RNA sequencing was used to screen differentially expressed mRNAs(DERs),and bioinformatic analysis was performed to identify the major biological events after DTP-PDT.Our results show that DTP-PDT inhibited cell growth and induced ROS generation in MCF-7 and SGC7901 cells.The ROS scavenger N-acetyl-L-cysteine(NAC)and the P38 MAPK inhibitor SB203580 alleviated DTP-PDT-induced cytotoxicity.DTP-PDT induced cell apoptosis together with upregulated Bax and downregulated Bcl-2,which could also be inhibited by NAC or SB203580.The level of LC3B-Ⅱ,a marker of autophagy,was increased by DTP-PDT.A total of 3496 DERs were obtained after DTP-PDT.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that DERs included those involved in cytosolic ribosomes,the nuclear lumen,protein binding,cell cycle,protein targeting to the endoplasmic reticulum,and ribosomal DNA replication.Disease Ontology and Reactome enrichment analyses indicated that DERs were associated with a variety of cancers and cell cycle checkpoints.Protein-protein interaction results demonstrated that cdk1 and rps27a ranked in the top 10 interacting genes.Therefore,DTP-PDT could inhibit cell growth and induce cell apoptosis and autophagy,partly through ROS and the P38 MAPK signaling pathway.Genes associated with the cell cycle,ribosomes,DNA replication,and protein binding may be the key changes in DTP-PDT-mediated cytotoxicity. 展开更多
关键词 photodynamic therapy ROS APOPTOSIS AUTOPHAGY Bioinformatic analysis
下载PDF
Codelivery of anti-CD47 antibody and chlorin e6 using a dual pH-sensitive nanodrug for photodynamic immunotherapy of osteosarcoma
9
作者 JIJIE XIAO HONG XIAO +4 位作者 YUJUN CAI JIANWEI LIAO JUE LIU LIN YAO SHAOLIN LI 《Oncology Research》 SCIE 2024年第4期691-702,共12页
Osteosarcoma is a malignant tumor originating from bone tissue that progresses rapidly and has a poor patient prognosis.Immunotherapy has shown great potential in the treatment of osteosarcoma.However,the immunosuppre... Osteosarcoma is a malignant tumor originating from bone tissue that progresses rapidly and has a poor patient prognosis.Immunotherapy has shown great potential in the treatment of osteosarcoma.However,the immunosuppressive microenvironment severely limits the efficacy of osteosarcoma treatment.The dual pH-sensitive nanocarrier has emerged as an effective antitumor drug delivery system that can selectively release drugs into the acidic tumor microenvironment.Here,we prepared a dual pH-sensitive nanocarrier,loaded with the photosensitizer Chlorin e6(Ce6)and CD47 monoclonal antibodies(aCD47),to deliver synergistic photodynamic and immunotherapy of osteosarcoma.On laser irradiation,Ce6 can generate reactive oxygen species(ROS)to kill cancer cells directly and induces immunogenic tumor cell death(ICD),which further facilitates the dendritic cell maturation induced by blockade of CD47 by aCD47.Moreover,both calreticulin released during ICD and CD47 blockade can accelerate phagocytosis of tumor cells by macrophages,promote antigen presentation,and eventually induce T lymphocyte-mediated antitumor immunity.Overall,the dual pH-sensitive nanodrug loaded with Ce6 and aCD47 showed excellent immune-activating and anti-tumor effects in osteosarcoma,which may lay the theoretical foundation for a novel combination model of osteosarcoma treatment. 展开更多
关键词 IMMUNOtherapy OSTEOSARCOMA Nanodrug photodynamic therapy CD47
下载PDF
Enhancing the Photosensitivity of Hypocrellin A by Perylene Diimide Metallacage‑Based Host–Guest Complexation for Photodynamic Therapy
10
作者 Rongrong Li Tianfeng Yang +7 位作者 Xiuhong Peng Qian Feng Yali Hou Jiao Zhu Dake Chu Xianglong Duan Yanming Zhang Mingming Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期71-87,共17页
The development of supramolecular hosts which can efficiently encapsulate photosensitizers to improve the photodynamic efficacy holds great promise for cancer therapy.Here,we report two perylene diimide-based metallac... The development of supramolecular hosts which can efficiently encapsulate photosensitizers to improve the photodynamic efficacy holds great promise for cancer therapy.Here,we report two perylene diimide-based metallacages that can form stable host–guest complexes with planar conjugated molecules including polycyclic aromatic hydrocarbons and photosensitizers(hypocrellin A).Such host–guest complexation not only prevents the aggregation of photosensitizers in aqueous environments,but also offers fluorescence resonance energy transfer(FRET)from the metallacage to the photosensitizers to further improve the singlet oxygen generation(Φ_(Δ)=0.66).The complexes are further assembled with amphiphilic polymers,forming nanoparticles with improved stability for anticancer study.Both in vitro and in vivo studies indicate that the nanoparticles display excellent anticancer activities upon light irradiation,showing great potential for cancer photodynamic therapy.This study provides a straightforward and effective approach for enhancing the photosensitivity of conventional photosensitizers via host–guest complexation-based FRET,which will open a new avenue for host–guest chemistry-based supramolecular theranostics. 展开更多
关键词 Metallacages Host-guest interactions Fluorescence resonance energy transfer Singlet oxygen photodynamic therapy
下载PDF
Hydroxyethyl starch conjugates co-assembled nanoparticles promote photodynamic therapy and antitumor immunity by inhibiting antioxidant systems
11
作者 Xiang Chen Zhengtao Yong +7 位作者 Yuxuan Xiong Hai Yang Chen Xu Xing Wang Qingyuan Deng Jiayuan Li Xiangliang Yang Zifu Li 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第5期166-181,共16页
Photodynamic therapy(PDT)can produce high levels of reactive oxygen species(ROS)to kill tumor cells and induce antitumor immunity.However,intracellular antioxidant systems,including glutathione(GSH)system and thioredo... Photodynamic therapy(PDT)can produce high levels of reactive oxygen species(ROS)to kill tumor cells and induce antitumor immunity.However,intracellular antioxidant systems,including glutathione(GSH)system and thioredoxin(Trx)system,limit the accumulation of ROS,resulting in compromised PDT and insufficient immune stimulation.Herein,we designed a nanomedicine PtHPs co-loading photosensitizer pyropheophorbide a(PPa)and cisplatin prodrug Pt-COOH(IV)(Pt(IV))based on hydroxyethyl starch(HES)to inhibit both GSH and Trx antioxidant systems and achieve potent PDT as well as antitumor immune responses.Specifically,HES-PPa and HES-Pt were obtained by coupling HES with PPa and Pt(IV),and assembled into nanoparticle PtHPs by emulsification method to achieve the purpose of co-delivery of PPa and Pt(IV).PtHPs improved PPa photostability while retaining PPa photodynamic properties.In vitro experiments showed that PtHPs reduced GSH,inhibited Trx system and had better cell-killing effect and ROS generation ability.Subcutaneous tumormodels showed that PtHPs had good safety and tumor inhibition effect.Bilateral tumor models suggested that PtHPs promoted the release of damage-associated molecular patterns and the maturation of dendritic cells,induced T cell-mediated immune responses,and thus suppressed the growth of both primary and distal tumors.This study reports a novel platinum-based nanomedicine and provides a newstrategy for boosting PDT therapy-mediated antitumor immunity by overcoming intrinsic antioxidant systems. 展开更多
关键词 Hydroxyethyl starch smart nanomedicine photodynamic therapy Antioxidant systems Immunogenic cell death
下载PDF
Anti-PD1 antibody and not anti-LAG-3 antibody improves the antitumor effect of photodynamic therapy for treating metastatic breast cancer
12
作者 Shan Long Yibing Zhao +9 位作者 Yuanyuan Xu Bo Wang Haixia Qiu Hongyou Zhao Jing Zeng Defu Chen Hui Li Jiakang Shao Xiaosong Li Ying Gu 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第1期87-103,共17页
Photodynamic therapy(PDT)has limited effects in treating metastatic breast cancer.Immune checkpoints can deplete the function of immune cells;however,the expression of immune checkpoints after PDT is unclear.This stud... Photodynamic therapy(PDT)has limited effects in treating metastatic breast cancer.Immune checkpoints can deplete the function of immune cells;however,the expression of immune checkpoints after PDT is unclear.This study investigates whether the limited e±cacy of PDT is due to upregulated immune checkpoints and tries to combine the PDT and immune checkpoint inhibitor to observe the e±cacy.A metastatic breast cancer model was treated by PDT mediated by hematoporphyrin derivatives(HpD-PDT).The anti-tumor effect of HpD-PDT was observed,as well as CD4þT,CD8þT and calreticulin(CRT)by immunohistochemistry and immunofluorescence.Immune checkpoints on T cells were analyzed byflow cytometry after HpD-PDT.When combining PDT with immune checkpoint inhibitors,the antitumor effect and immune effect were assessed.For HpD-PDT at 100 mW/cm2 and 40,60 and 80 J/cm2,primary tumors were suppressed and CD4þT,CD8þT and CRT were elevated;however,distant tumors couldn't be inhibited and survival could not be prolonged.Immune checkpoints on T cells,especially PD1 and LAG-3 after HpD-PDT,were upregulated,which may explain the reason for the limited HpD-PDT effect.After PDT combined with anti-PD1 antibody,but not with anti-LAG-3 antibody,both the primary and distant tumors were signi-cantly inhibited and the survival time was prolonged,additionally,CD4þT,CD8þT,IFN-þCD4þT and TNF-þCD4þT cells were signi-cantly increased compared with HpD-PDT.HpD-PDT could not combat metastatic breast cancer.PD1 and LAG-3 were upregulated after HpD-PDT.Anti-PD1 antibody,but not anti-LAG-3 antibody,could augment the antitumor effect of HpD-PDT for treating metastatic breast cancer. 展开更多
关键词 photodynamic therapy anti-PD1 antibody anti-LAG-3 antibody anti-tumor im-mune effects metastatic breast cancer
下载PDF
Potential of photodynamic therapy in the management of infectious oral diseases
13
作者 Cinzia Casu Germano Orrù 《World Journal of Experimental Medicine》 2024年第1期1-5,共5页
Photodynamic therapy(PDT)can take place in the presence of three elements:Light with an appropriate wavelength;a photosensitizer;and the presence of oxygen.This type of treatment is very effective overall against bact... Photodynamic therapy(PDT)can take place in the presence of three elements:Light with an appropriate wavelength;a photosensitizer;and the presence of oxygen.This type of treatment is very effective overall against bacterial,viral and mycotic cells.In the last 10 years many papers have been published on PDT with different types of photosensitizers(e.g.,methylene blue,toluidine blue,indocyanine green,curcumin-based photosensitizers),different wavelengths(e.g.,460 nm,630 nm,660 nm,810 nm)and various parameters(e.g.,power of the light,time of illumination,number of sessions).In the scientific literature all types of PDT seem very effective,even if it is difficult to find a standard protocol for each oral pathology.PDT could be an interesting way to treat some dangerous oral infections refractory to common pharmacological therapies,such as candidiasis from multidrug-resistant Candida spp. 展开更多
关键词 photodynamic therapy oral infections photodynamic therapy vs candidiasis Blue light 460 nm Streptococcus mutans
下载PDF
Activatable theranostic prodrug scaffold with tunable drug release rate for sequential photodynamic and chemotherapy
14
作者 Si-Yu Wang Ying-Hao Pan +4 位作者 Yu-Chen Qu Xiao-Xiao Chen Na Shao Li-Ya Niu Qing-Zheng Yang 《Smart Molecules》 2024年第1期110-117,共8页
Glutathione(GSH)-activated prodrugs are promising for overcoming the limitations of conventional anti-tumor drugs.However,current GSH-responsive disulfide groups exhibit unregulated reactivity,making it impossible to ... Glutathione(GSH)-activated prodrugs are promising for overcoming the limitations of conventional anti-tumor drugs.However,current GSH-responsive disulfide groups exhibit unregulated reactivity,making it impossible to precisely control the drug release rate.We herein report a series of GSH-responsive prodrugs with a“three-in-one”molecular design by integrating a fluorescence report unit,stimuliresponsive unit and chemodrug into one scaffold with tunable aromatic nucleophilic substitution(SNAr)reactivity.The drug release rate of these prodrugs is tailored by modification of substituent groups with different electron-withdrawing or-donating abilities on the BODIPY core.Furthermore,the prodrugs self-assemble in water to form nanoparticles that serve as photosensitizers to produce reactive oxygen species upon irradiation for photodynamic therapy(PDT).The PDT process also increases the concentration of GSH in cells,further promoting the release of drugs for chemotherapy.This strategy provides a powerful platform for sequential photodynamic and chemotherapy with tunable drug release rates and synergistic therapeutic effects. 展开更多
关键词 combinational therapy fluorescent probes photodynamic therapy PRODRUGS theranostic agents
下载PDF
Clinical Study of Photodynamic Therapy for Upper Gastrointestinal Tract Cancers 被引量:2
15
作者 刘端祺 刘慧龙 +1 位作者 介雅慧 徐留柱 《The Chinese-German Journal of Clinical Oncology》 CAS 2006年第2期90-92,共3页
Objective: To evaluate the clinical effectiveness and adverse effects of photodynamic therapy (PDT) for the upper gastrointestinal tract cancers. Methods: 56 patients with upper gastrointestinal cancers in differe... Objective: To evaluate the clinical effectiveness and adverse effects of photodynamic therapy (PDT) for the upper gastrointestinal tract cancers. Methods: 56 patients with upper gastrointestinal cancers in different clinical stages were treated with PDT. Diode laser (630 nm) was used as the light source and the parameters were as follows: power density 200 to 400 mW/cm, energy density 100 to 300 J/cm. PHOTOFRIN was used as photosensitizer, which was given in a dose of 2 mg/kg intravenously 12-24 h before irradiation. Results: Evaluation of the 56 patients' therapeutic effectiveness showed that 6 patients (10.7%) had a complete response (CR), 33 patients (58.9%) partial response (PR), 12 patients (21.4%) mild response (MR), and 5 patients (8.9%) no response (NR). The total response rate (CR+PR) was 69.6%. No patients had severe adverse effects in this group. Conclusion: PDT is an effective and safe palliative modality for upper gastrointestinal tract cancers. 展开更多
关键词 photodynamic therapy upper gastrointestinal cancer
下载PDF
Recent Advances in Tumor Microenvironment Hydrogen Peroxide-Responsive Materials for Cancer Photodynamic Therapy 被引量:18
16
作者 Nan Yang Wanyue Xiao +2 位作者 Xuejiao Song Wenjun Wang Xiaochen Dong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第1期208-234,共27页
Photodynamic therapy(PDT),as one of the noninvasive clinical cancer phototherapies,suffers from the key drawback associated with hypoxia at the tumor microenvironment(TME),which plays an important role in protecting t... Photodynamic therapy(PDT),as one of the noninvasive clinical cancer phototherapies,suffers from the key drawback associated with hypoxia at the tumor microenvironment(TME),which plays an important role in protecting tumor cells from damage caused by common treatments.High concentration of hydrogen peroxide(H2O2),one of the hallmarks of TME,has been recognized as a double-edged sword,posing both challenges,and opportunities for cancer therapy.The promising perspectives,strategies,and approaches for enhanced tumor therapies,including PDT,have been developed based on the fast advances in H2O2-enabled theranostic nanomedicine.In this review,we outline the latest advances in H2O2-responsive materials,including organic and inorganic materials for enhanced PDT.Finally,the challenges and opportunities for further research on H2O2-responsive anticancer agents are envisioned. 展开更多
关键词 Tumor microenvironment H2O2-responsive CANCER NANOMATERIALS photodynamic therapy
下载PDF
Photodynamic therapy vs radiofrequency ablation for Barrett's dysplasia: Efficacy,safety and cost-comparison 被引量:8
17
作者 Atilla Ertan Irum Zaheer +2 位作者 Arlene M Correa Nirav Thosani Shanda H Blackmon 《World Journal of Gastroenterology》 SCIE CAS 2013年第41期7106-7113,共8页
AIM:To compare effectiveness,safety,and cost of photodynamic therapy(PDT)and radiofrequency ablation(RFA)in treatment of Barrett’s dysplasia(BD).METHODS:Consecutive case series of patients undergoing either PDT or RF... AIM:To compare effectiveness,safety,and cost of photodynamic therapy(PDT)and radiofrequency ablation(RFA)in treatment of Barrett’s dysplasia(BD).METHODS:Consecutive case series of patients undergoing either PDT or RFA treatment at single center by a single investigator were compared.Thirty-three patients with high-grade dysplasia(HGD)had treatment with porfimer sodium photosensitzer and 630 nm laser(130 J/cm),with maximum of 3 treatment sessions.Fifty-three patients with BD(47 with low-grade dysplasia-LGD,6 with HGD)had step-wise circumferential and focal ablation using the HALO system with maximum of 4 treatment sessions.Both groups received proton pump inhibitors twice daily.Endoscopic biopsies were acquired at 2 and 12 mo after enrollment,with 4-quadrant biopsies every 1 cm of the original BE extent.A complete histological resolution response of BD(CR-D)was defined as all biopsies at the last endoscopy session negative for BD.Fisher’s exact test was used to assess differences between the two study groups for primary outcomes.For all outcomes,a two-sided P value of less than 0.05 was considered to indicate statistical significance.RESULTS:Thirty(91%)PDT patients and 39(74%)RFA were men(P=0.05).The mean age was 70.7±12.2 and 65.4±12.7(P=0.10)year and mean length of BE was 5.4±3.2 cm and 5.7±3.2 cm(P=0.53)for PDT and RFA patients,respectively.The CR-D was(18/33)54.5%with PDT vs(47/53)88.7%with RFA(P=0.001).One patient with PDT had an esophageal perforation and was managed with non-surgical measures and no perforation was seen with RFA.PDT was five times more costly than RFA at our institution.The two groups were not randomized and had different BD grading are the limitations of the study.CONCLUSION:In our experience,RFA had higher rate of CR-D without any serious adverse events and was less costly than PDT for endoscopic treatment of BD. 展开更多
关键词 Barrett’s ESOPHAGUS DYSPLASIA photodynamic therapy RADIOFREQUENCY ablation Cost comparison
下载PDF
Photodynamic therapy for high-grade dysplasia of bile duct via a choledochoscope 被引量:7
18
作者 Jiang-Jiao Zhou Li Xiong +4 位作者 Qing-Long Li Ying Gu Yu Wen Xiao-Feng Deng Xiong-Ying Miao 《World Journal of Gastroenterology》 SCIE CAS 2013年第33期5590-5592,共3页
When a distal common bile duct neoplasm is at the stage of carcinoma in situ or high-grade dysplasia,it is difficult for the surgeon to decide whether to perform pancreaticoduodenectomy.Here we describe a patient with... When a distal common bile duct neoplasm is at the stage of carcinoma in situ or high-grade dysplasia,it is difficult for the surgeon to decide whether to perform pancreaticoduodenectomy.Here we describe a patient with a progressive dysplastic lesion in the common bile duct,which developed from moderate-high to highgrade dysplasia in approximately 2 mo.The patient refused major surgery.Therefore,endoscopic-assisted photodynamic therapy was performed.The result at follow-up using a trans-T-tube choledochoscope showed that the lesion was completely necrotic.This report is the first to describe the successful treatment of highgrade dysplasia of the distal bile duct using photodynamic therapy via a choledochoscope. 展开更多
关键词 photodynamic therapy COMMON BILE DUCT HIGH-GRADE DYSPLASIA CHOLEDOCHOSCOPE
下载PDF
Influence of Photodynamic Therapy on Apoptosis and Invasion of Human Cholangiocarcinoma QBC939 Cell Line 被引量:7
19
作者 Yun-jie Chen Hai-tao Jiang Jing-yu Cao 《Chinese Medical Sciences Journal》 CAS CSCD 2015年第4期252-259,共8页
Objective To investigate the effect of photodynamic therapy(PDT) mediated by hematoporphyrin derivative(HPD) on apoptosis and invasion of cholangiocarcinoma QBC939 cell lines. Methods In vitro cultured cholangiocarcin... Objective To investigate the effect of photodynamic therapy(PDT) mediated by hematoporphyrin derivative(HPD) on apoptosis and invasion of cholangiocarcinoma QBC939 cell lines. Methods In vitro cultured cholangiocarcinoma QBC939 cell line was exposed to 2, 4, 6, 8, 10, 12, and 14 μg/ml HPD with 5, 10, and 15 J/cm2 light intensity, respectively. The optical density at 450 nm of the QBC939 cells was measured by CCK8 assay and its growth inhibition ratio was calculated. Flow cytometry and transwell migration assay were applied to detect cell apoptosis and invasion respectively. RT-PCR and immunocytochemistry analyses were used to detect expressions of vascular endothelial growth factor-C(VEGF-C), cyclooxygenase-2(COX-2), and proliferating cell nuclear antigen(PCNA). Enzyme-linked immunosorbent assay(ELISA) was carried out to examine the secretion of VEGF-C and COX-2 in QBC939 cells. Results Exposure to HPD-PDT can significantly suppress the growth of QBC939 cells(all P<0.05). HPD-PDT can promote apoptosis of QBC939 cells at the early stage. When the concentration of HPD was 2 μg/ml and light irradiation was 5 J/cm2, HPD-PDT had no obvious inhibitory effect on QBC939 cell growth, but can obviously inhibit cell invasion, and significant difference was observed between the HPD-PDT and control groups(P<0.01). The HPD-PDT can reduce the m RNA and protein expressions of VEGF-C, COX-2, and PCNA, and decrease the secretion of VEGF-C and COX-2 in QBC939 cells. Conclusion PDT could promote apoptosis and inhibit growth and invasion of cholangiocarcinoma cells QBC939 in vitro. 展开更多
关键词 photodynamic therapy CHOLANGIOCARCINOMA APOPTOSIS INVASION
下载PDF
Human natural killer cells for targeting delivery of gold nanostars and bimodal imaging directed photothermal/photodynamic therapy and immunotherapy 被引量:8
20
作者 Bin Liu Wen Cao +11 位作者 Jin Cheng Sisi Fan Shaojun Pan Lirui Wang Jiaqi Niu Yunxiang Pan Yanlei Liu Xiyang Sun Lijun Ma Jie Song Jian Ni Daxiang Cui 《Cancer Biology & Medicine》 SCIE CAS CSCD 2019年第4期756-770,共15页
Objective:To construct a novel nanoplatform GNS@CaCO3/Ce6-NK by loading the CaCO3-coated gold nanostars(GNSs)with Chlorin e6 molecules(Ce6)into human peripheral blood mononuclear cells(PBMCs)-derived NK cells for tumo... Objective:To construct a novel nanoplatform GNS@CaCO3/Ce6-NK by loading the CaCO3-coated gold nanostars(GNSs)with Chlorin e6 molecules(Ce6)into human peripheral blood mononuclear cells(PBMCs)-derived NK cells for tumor targeted therapy.Methods:GNS@CaCO3/Ce6 nanoparticles were prepared and characterized by TEM and UV-vis.The cell surface markers and cytokines secretion of NK cells before and after loading the GNS@CaCO3/Ce6 nanoparticles were detected by Flow Cytometry(FCM)and ELISA.Effects of the GNS@CaCO3/Ce6-NK cells on A549 cancer cells was determined by FCM and CCK-8.Intracellular fluorescent signals of GNS@CaCO3/Ce6-NK cells were detected via Confocal laser scanning microscopic(CLSM)and FCM at different time points.Intracellular ROS generation of GNS@CaCO3/Ce6-NK cells under laser irradiation were examined by FCM.The distribution of GNS@CaCO3/Ce6-NK in A549 tumor-bearing mice were observed by fluorescence imaging and PA imaging.The combination therapy of GNS@CaCO3/Ce6-NK under laser irradiation were investigated on tumor-bearing mice.Results:The coated CaC03 shell on the surface of GNSs exhibited prominent delivery and protection effect of Ce6 during the cellular uptake process.The as-prepared multifunctional GNS@CaCO3/Ce6-NK cells possessed bimodal functions of fluorescence imaging and photoacoustic imaging.The as-prepared multifunctional GNS@CaCO3/Ce6-NK cells could actively target tumor tissues with the enhanced photothermal/photodynamic therapy and immunotherapy.Conclusions:The GNS@CaCO3/Ce6-NK shows effective tumor-targeting ability and prominent therapeutic efficacy toward lung cancer A549 tumor-bearing mice.Through fully utilizing the features of GNSs and NK cells,this new nanoplatform provides a new synergistic strategy for enhanced photothermal/photodynamic therapy and immunotherapy in the field of anticancer development in the near future. 展开更多
关键词 Gold nanostars natural killer cells photothermal therapy photodynamic therapy IMMUNOtherapy
下载PDF
上一页 1 2 173 下一页 到第
使用帮助 返回顶部