Forecasting solar irradiance is a critical task in the renewable energy sector, as it provides essential information regarding the potential energy production from solar panels. This study aims to utilize the Vector A...Forecasting solar irradiance is a critical task in the renewable energy sector, as it provides essential information regarding the potential energy production from solar panels. This study aims to utilize the Vector Autoregression (VAR) model to forecast solar irradiance levels and weather characteristics in the San Francisco Bay Area. The results demonstrate a correlation between predicted and actual solar irradiance, indicating the effectiveness of the VAR model for this task. However, the model may not be sufficient for this region due to the requirement of additional weather features to reduce disparities between predictions and actual observations. Additionally, the current lag order in the model is relatively low, limiting its ability to capture all relevant information from past observations. As a result, the model’s forecasting capability is limited to short-term horizons, with a maximum horizon of four hours.展开更多
In this paper PC-VAR estimation of vector autoregressive models (VAR) is proposed. The estimation strategy successfully lessens the curse of dimensionality affecting VAR models, when estimated using sample sizes typic...In this paper PC-VAR estimation of vector autoregressive models (VAR) is proposed. The estimation strategy successfully lessens the curse of dimensionality affecting VAR models, when estimated using sample sizes typically available in quarterly studies. The procedure involves a dynamic regression using a subset of principal components extracted from a vector time series, and the recovery of the implied unrestricted VAR parameter estimates by solving a set of linear constraints. PC-VAR and OLS estimation of unrestricted VAR models show the same asymptotic properties. Monte Carlo results strongly support PC-VAR estimation, yielding gains, in terms of both lower bias and higher efficiency, relatively to OLS estimation of high dimensional unrestricted VAR models in small samples. Guidance for the selection of the number of components to be used in empirical studies is provided.展开更多
In this study, impact of inflation (WPI--Wholesale Price Index), exchange rate, and interest rate on the production of red meat in Turkey was examined using the vector autoregressive (VAR) model. The model consist...In this study, impact of inflation (WPI--Wholesale Price Index), exchange rate, and interest rate on the production of red meat in Turkey was examined using the vector autoregressive (VAR) model. The model consisting of variables of dollar exchange rate, inflation rate, interest rate, beef, buffalo meat, mutton, and goat meat production amounts has been estimated for the period from 1981 to 2014. It has been detected that there is a tie among the dollar exchange rate, inflation rate, interest rate, and the amount of red meat production in Turkey. In order to determine the direction of this relation, Granger causality test was conducted. A one-way causal relation has been observed between: the goat meat production and dollar exchange rate; the buffalo meat production and the mutton production; and the beef production and the mutton production. To interpret VAR model, the impulse response function and variance decomposition analysis was used. As a result of variance decomposition, it has been detected that explanatory power of changes in the variance of dollar exchange rate, inflation rate, and interest rate in goat meat production amount is more than explanatory power of changes in the variances of mutton, beef, and buffalo meat variables.展开更多
In this paper, vector autoregressive (VAR) models have been recognized for the selected indicators of Dhaka stock exchange (DSE). Bangladesh uses the micro economic variables, such as stock trade, invested stock c...In this paper, vector autoregressive (VAR) models have been recognized for the selected indicators of Dhaka stock exchange (DSE). Bangladesh uses the micro economic variables, such as stock trade, invested stock capital, stock volume, current market value, and DSE general indexes which have the direct impact on DSE prices. The data were collected for the period from June 2004 to July 2013 as the basis on daily scale. But to get the maximum explorative information and reduction of volatility, the data have been transformed to the monthly scale. The outliers and extreme values of the study variables are detected through box and whisker plot. To detect the unit root property of the study variables, various unit root tests have been applied. The forecast performance of the different VAR models is compared to have the minimum residual. Moreover, the dynamics of this financial market is analyzed through Granger causality and impulse response analysis.展开更多
A forecasting method of oil well production based on multivariate time series(MTS)and vector autoregressive(VAR)machine learning model for waterflooding reservoir is proposed,and an example application is carried out....A forecasting method of oil well production based on multivariate time series(MTS)and vector autoregressive(VAR)machine learning model for waterflooding reservoir is proposed,and an example application is carried out.This method first uses MTS analysis to optimize injection and production data on the basis of well pattern analysis.The oil production of different production wells and water injection of injection wells in the well group are regarded as mutually related time series.Then a VAR model is established to mine the linear relationship from MTS data and forecast the oil well production by model fitting.The analysis of history production data of waterflooding reservoirs shows that,compared with history matching results of numerical reservoir simulation,the production forecasting results from the machine learning model are more accurate,and uncertainty analysis can improve the safety of forecasting results.Furthermore,impulse response analysis can evaluate the oil production contribution of the injection well,which can provide theoretical guidance for adjustment of waterflooding development plan.展开更多
文摘Forecasting solar irradiance is a critical task in the renewable energy sector, as it provides essential information regarding the potential energy production from solar panels. This study aims to utilize the Vector Autoregression (VAR) model to forecast solar irradiance levels and weather characteristics in the San Francisco Bay Area. The results demonstrate a correlation between predicted and actual solar irradiance, indicating the effectiveness of the VAR model for this task. However, the model may not be sufficient for this region due to the requirement of additional weather features to reduce disparities between predictions and actual observations. Additionally, the current lag order in the model is relatively low, limiting its ability to capture all relevant information from past observations. As a result, the model’s forecasting capability is limited to short-term horizons, with a maximum horizon of four hours.
文摘In this paper PC-VAR estimation of vector autoregressive models (VAR) is proposed. The estimation strategy successfully lessens the curse of dimensionality affecting VAR models, when estimated using sample sizes typically available in quarterly studies. The procedure involves a dynamic regression using a subset of principal components extracted from a vector time series, and the recovery of the implied unrestricted VAR parameter estimates by solving a set of linear constraints. PC-VAR and OLS estimation of unrestricted VAR models show the same asymptotic properties. Monte Carlo results strongly support PC-VAR estimation, yielding gains, in terms of both lower bias and higher efficiency, relatively to OLS estimation of high dimensional unrestricted VAR models in small samples. Guidance for the selection of the number of components to be used in empirical studies is provided.
文摘In this study, impact of inflation (WPI--Wholesale Price Index), exchange rate, and interest rate on the production of red meat in Turkey was examined using the vector autoregressive (VAR) model. The model consisting of variables of dollar exchange rate, inflation rate, interest rate, beef, buffalo meat, mutton, and goat meat production amounts has been estimated for the period from 1981 to 2014. It has been detected that there is a tie among the dollar exchange rate, inflation rate, interest rate, and the amount of red meat production in Turkey. In order to determine the direction of this relation, Granger causality test was conducted. A one-way causal relation has been observed between: the goat meat production and dollar exchange rate; the buffalo meat production and the mutton production; and the beef production and the mutton production. To interpret VAR model, the impulse response function and variance decomposition analysis was used. As a result of variance decomposition, it has been detected that explanatory power of changes in the variance of dollar exchange rate, inflation rate, and interest rate in goat meat production amount is more than explanatory power of changes in the variances of mutton, beef, and buffalo meat variables.
文摘In this paper, vector autoregressive (VAR) models have been recognized for the selected indicators of Dhaka stock exchange (DSE). Bangladesh uses the micro economic variables, such as stock trade, invested stock capital, stock volume, current market value, and DSE general indexes which have the direct impact on DSE prices. The data were collected for the period from June 2004 to July 2013 as the basis on daily scale. But to get the maximum explorative information and reduction of volatility, the data have been transformed to the monthly scale. The outliers and extreme values of the study variables are detected through box and whisker plot. To detect the unit root property of the study variables, various unit root tests have been applied. The forecast performance of the different VAR models is compared to have the minimum residual. Moreover, the dynamics of this financial market is analyzed through Granger causality and impulse response analysis.
基金Huo Yingdong Education Foundation Young Teachers Fund for Higher Education Institutions(171043)Sichuan Outstanding Young Science and Technology Talent Project(2019JDJQ0036)。
文摘A forecasting method of oil well production based on multivariate time series(MTS)and vector autoregressive(VAR)machine learning model for waterflooding reservoir is proposed,and an example application is carried out.This method first uses MTS analysis to optimize injection and production data on the basis of well pattern analysis.The oil production of different production wells and water injection of injection wells in the well group are regarded as mutually related time series.Then a VAR model is established to mine the linear relationship from MTS data and forecast the oil well production by model fitting.The analysis of history production data of waterflooding reservoirs shows that,compared with history matching results of numerical reservoir simulation,the production forecasting results from the machine learning model are more accurate,and uncertainty analysis can improve the safety of forecasting results.Furthermore,impulse response analysis can evaluate the oil production contribution of the injection well,which can provide theoretical guidance for adjustment of waterflooding development plan.