Based on the vector graviton metric theory of gravitation (VGM) suggested by one of the authors of this article, using the method of null tetrad and analytic continuation, this paper gives the metric of the rotating c...Based on the vector graviton metric theory of gravitation (VGM) suggested by one of the authors of this article, using the method of null tetrad and analytic continuation, this paper gives the metric of the rotating charged spherical mass in VGM. The result shows once again that a replacement of G by G* = G(1 - G M /2r) in general relativity will yield the corresponding result in VGM for the metric in vacuum.展开更多
This article suggests a new metric theory of gravitation, in which metric field is determined not only by matter and nongravitational field but also by vector graviton field, and in principle there is no need to intro...This article suggests a new metric theory of gravitation, in which metric field is determined not only by matter and nongravitational field but also by vector graviton field, and in principle there is no need to introduce the Einstein's tensor. In order to satisfy automatically the geodesic postulate, an additional coordinate condition is needed. For the spherically symmetric static field, it leads us to quite different conclusions from those of Einstein's general relativity in the interior region of the surface of infinite redshift. Accurate to the first order of , it obtains the same results about the four experimental tests of general relativity.展开更多
Based on the new metric theory of gravitation suggested by the author of this article, it gives a possible theoretical interpretation on the famous experiment done by D.R. Long in 1976, i.e. the distance-dependent eff...Based on the new metric theory of gravitation suggested by the author of this article, it gives a possible theoretical interpretation on the famous experiment done by D.R. Long in 1976, i.e. the distance-dependent effect of the gravitational constant in Newton's theory of gravitation.展开更多
文摘Based on the vector graviton metric theory of gravitation (VGM) suggested by one of the authors of this article, using the method of null tetrad and analytic continuation, this paper gives the metric of the rotating charged spherical mass in VGM. The result shows once again that a replacement of G by G* = G(1 - G M /2r) in general relativity will yield the corresponding result in VGM for the metric in vacuum.
文摘This article suggests a new metric theory of gravitation, in which metric field is determined not only by matter and nongravitational field but also by vector graviton field, and in principle there is no need to introduce the Einstein's tensor. In order to satisfy automatically the geodesic postulate, an additional coordinate condition is needed. For the spherically symmetric static field, it leads us to quite different conclusions from those of Einstein's general relativity in the interior region of the surface of infinite redshift. Accurate to the first order of , it obtains the same results about the four experimental tests of general relativity.
文摘Based on the new metric theory of gravitation suggested by the author of this article, it gives a possible theoretical interpretation on the famous experiment done by D.R. Long in 1976, i.e. the distance-dependent effect of the gravitational constant in Newton's theory of gravitation.