In this paper, we deduce the analytical form of many-body interatomic potentials based on the Green's function in tight-binding representation. The many-body potentials are expressed as the functions of the hoppin...In this paper, we deduce the analytical form of many-body interatomic potentials based on the Green's function in tight-binding representation. The many-body potentials are expressed as the functions of the hopping integrals which are the physical origin of cohesion of atoms. For thesimple case of s-valent system, the inversion of the many-body potentials are discussed in detail by using the lattice inversion method.展开更多
By virtue of a complete set of two displacement potentials,an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic substrate–coating system is presented.Three...By virtue of a complete set of two displacement potentials,an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic substrate–coating system is presented.Three-dimensional point–load and patch–load Green’s functions for stresses and displacements are given in line-integral representations.The formulation includes a complete set of transformed stress–potential and displacement–potential relations,with utilizing Fourier series and Hankel transforms.As illustrations,the present Green’s functions are degenerated to the special cases such as an exponentially graded half-space and a homogeneous two-layered half-space Green’s functions.Because of complicated integrand functions,the integrals are evaluated numerically and for numerical computation of the integrals,a robust and effective methodology is laid out which gives the necessary account of the presence of singularities of integration.Comparisons of the existing numerical solutions for homogeneous two-layered isotropic and transversely isotropic half-spaces are made to confirm the accuracy of the present solutions.Some typical numerical examples are also given to show the general features of the exponentially graded two-layered half-space Green’s functions that the effect of degree of variation of material properties will be recognized.展开更多
A new method for solving electromagnetic field boundary value problem is given.Byusing this method,the boundary value problem of the vector wave equation can be transformedinto the independent boundary value problem o...A new method for solving electromagnetic field boundary value problem is given.Byusing this method,the boundary value problem of the vector wave equation can be transformedinto the independent boundary value problem of scalar wave equations and the two additionalvector differential operations.All the dyadic Green’s functions got by eigenfunction expansionof the dyadic Green’s function can be got by this method easily and some of the dyadic Green’sfunctions for complex systems which are very difficult to get by the ordinary method have beengot by this new method.The dyadic Green’s function for a dielectric loaded cavity is one of thegiven examples.展开更多
In this paper we give an alternative treatment of the Schrodinger equation with the Morse potential, which based on the exact summation of the Feynman perturbation series in its original form. Using Fourier transform ...In this paper we give an alternative treatment of the Schrodinger equation with the Morse potential, which based on the exact summation of the Feynman perturbation series in its original form. Using Fourier transform we establish a recurrence equation between terms of the perturbation series. Finally, by the inverse Fourier transform and some technical tools of the ordinary differential equations of the second order, we can compute the exact sum of the perturbation series which is the Green’s function of the problem.展开更多
Based on the dipole source method, all components of the Green's functions in spectral domain are restructured concisely by four basis functions, and in terms of the two-level discrete complex image method (DCIM) w...Based on the dipole source method, all components of the Green's functions in spectral domain are restructured concisely by four basis functions, and in terms of the two-level discrete complex image method (DCIM) with the high order Sommerfeld identities, an efficient algorithm for closed-form Green's functions in spatial domain in multilayered media is presented. This new work enjoys the advantages of the surface wave pole extraction directly carried out by the generalized integral path without troubles of that all components of Green's function in spectral domain should be reformed respectively in transmission line network analogy, and then the Green's functions for mixed-potential integral equation (MPIE) analysis in both near-field and far-field in multilayered media are obtained. In addition, the curl operator for coupled field in MPIE is avoided conveniently. It is especially applicable and useful to characterize the electromagnetic scattering by, and radiation in the presence of, the electrically large 3-D objects in multilayered media. The numerical results of the S-parameters of a microstrip periodic bandgap (PBG) filter, the radar cross section (RCS) of a large microstrip antenna array, the characteristics of scattering, and radiation from the three-dimensional (3-D) targets in multilayered media are obtained, to demonstrate better effectiveness and accuracy of this technique.展开更多
Employing the strong fluctuation theory, the radiative transfer equation for strongly fluctuating, continuous random media; and the associated phase matrix and scattering coefficient are obtained. By using the Gaussia...Employing the strong fluctuation theory, the radiative transfer equation for strongly fluctuating, continuous random media; and the associated phase matrix and scattering coefficient are obtained. By using the Gaussian quadrature and the eigenvalue-eigenvector approaches, the vector thermal radiative transfer equation for a layer of random medium is solved and is favorably matched with the experimental data of snowfield in remote sensing. The comparison with the conventional theory for weak fluctuation is discussed.展开更多
We determine explicitly the exact transcendental bound states energies equation for a one-dimensional harmonic oscillator perturbed by a single and a double point interactions via Green's function techniques using...We determine explicitly the exact transcendental bound states energies equation for a one-dimensional harmonic oscillator perturbed by a single and a double point interactions via Green's function techniques using both momentum and position space representations. The even and odd solutions of the problem are discussed. The corresponding limiting cases are recovered. For the harmonic oscillator with a point interaction in more than one dimension,divergent series appear. We use to remove this divergence an exponential regulator and we obtain a transcendental equation for the energy bound states. The results obtained here are consistent with other investigations using different methods.展开更多
文摘In this paper, we deduce the analytical form of many-body interatomic potentials based on the Green's function in tight-binding representation. The many-body potentials are expressed as the functions of the hopping integrals which are the physical origin of cohesion of atoms. For thesimple case of s-valent system, the inversion of the many-body potentials are discussed in detail by using the lattice inversion method.
文摘By virtue of a complete set of two displacement potentials,an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic substrate–coating system is presented.Three-dimensional point–load and patch–load Green’s functions for stresses and displacements are given in line-integral representations.The formulation includes a complete set of transformed stress–potential and displacement–potential relations,with utilizing Fourier series and Hankel transforms.As illustrations,the present Green’s functions are degenerated to the special cases such as an exponentially graded half-space and a homogeneous two-layered half-space Green’s functions.Because of complicated integrand functions,the integrals are evaluated numerically and for numerical computation of the integrals,a robust and effective methodology is laid out which gives the necessary account of the presence of singularities of integration.Comparisons of the existing numerical solutions for homogeneous two-layered isotropic and transversely isotropic half-spaces are made to confirm the accuracy of the present solutions.Some typical numerical examples are also given to show the general features of the exponentially graded two-layered half-space Green’s functions that the effect of degree of variation of material properties will be recognized.
基金This project is supported by the National Science Fundation of China
文摘A new method for solving electromagnetic field boundary value problem is given.Byusing this method,the boundary value problem of the vector wave equation can be transformedinto the independent boundary value problem of scalar wave equations and the two additionalvector differential operations.All the dyadic Green’s functions got by eigenfunction expansionof the dyadic Green’s function can be got by this method easily and some of the dyadic Green’sfunctions for complex systems which are very difficult to get by the ordinary method have beengot by this new method.The dyadic Green’s function for a dielectric loaded cavity is one of thegiven examples.
文摘In this paper we give an alternative treatment of the Schrodinger equation with the Morse potential, which based on the exact summation of the Feynman perturbation series in its original form. Using Fourier transform we establish a recurrence equation between terms of the perturbation series. Finally, by the inverse Fourier transform and some technical tools of the ordinary differential equations of the second order, we can compute the exact sum of the perturbation series which is the Green’s function of the problem.
基金the National Natural Science Foundation of China (Grant No. 60371020)National Defense Pre-research Foundation of China (Grant No. 9140a03020206dz0112)
文摘Based on the dipole source method, all components of the Green's functions in spectral domain are restructured concisely by four basis functions, and in terms of the two-level discrete complex image method (DCIM) with the high order Sommerfeld identities, an efficient algorithm for closed-form Green's functions in spatial domain in multilayered media is presented. This new work enjoys the advantages of the surface wave pole extraction directly carried out by the generalized integral path without troubles of that all components of Green's function in spectral domain should be reformed respectively in transmission line network analogy, and then the Green's functions for mixed-potential integral equation (MPIE) analysis in both near-field and far-field in multilayered media are obtained. In addition, the curl operator for coupled field in MPIE is avoided conveniently. It is especially applicable and useful to characterize the electromagnetic scattering by, and radiation in the presence of, the electrically large 3-D objects in multilayered media. The numerical results of the S-parameters of a microstrip periodic bandgap (PBG) filter, the radar cross section (RCS) of a large microstrip antenna array, the characteristics of scattering, and radiation from the three-dimensional (3-D) targets in multilayered media are obtained, to demonstrate better effectiveness and accuracy of this technique.
基金Project supported by the National Natural Science Foundation of China and the Fok Ying Tung Education Foundation.
文摘Employing the strong fluctuation theory, the radiative transfer equation for strongly fluctuating, continuous random media; and the associated phase matrix and scattering coefficient are obtained. By using the Gaussian quadrature and the eigenvalue-eigenvector approaches, the vector thermal radiative transfer equation for a layer of random medium is solved and is favorably matched with the experimental data of snowfield in remote sensing. The comparison with the conventional theory for weak fluctuation is discussed.
基金Supported by the Algerian Ministry of Higher Education and Scientific Research under the CNEPRU project No.D01720140001
文摘We determine explicitly the exact transcendental bound states energies equation for a one-dimensional harmonic oscillator perturbed by a single and a double point interactions via Green's function techniques using both momentum and position space representations. The even and odd solutions of the problem are discussed. The corresponding limiting cases are recovered. For the harmonic oscillator with a point interaction in more than one dimension,divergent series appear. We use to remove this divergence an exponential regulator and we obtain a transcendental equation for the energy bound states. The results obtained here are consistent with other investigations using different methods.