By applying a maximal element theorem on product FC-space due to author, some new equilibrium existence theorems for generalized games with fuzzy constraint correspondences are proved in FC-spaces. By using these equi...By applying a maximal element theorem on product FC-space due to author, some new equilibrium existence theorems for generalized games with fuzzy constraint correspondences are proved in FC-spaces. By using these equilibrium existence theorems, some new existence theorems of solutions for the system of generalized vector quasi-equilibrium problems are established in noncompact product FC-spaces. These results improve and generalize some recent results in literature to product FC-spaces without any convexity structure.展开更多
A new system of vector quasi-equilibrium problems is introduced and its existence of solution is proved. As applications, some existence results of weak Pareto equilibrium for both constrained multicriteria games and ...A new system of vector quasi-equilibrium problems is introduced and its existence of solution is proved. As applications, some existence results of weak Pareto equilibrium for both constrained multicriteria games and multicriteria games without constrained correspondences are also shown.展开更多
Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector...Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector variational inequality problems, quasi-equilibrium problems and quasi-variational inequality problems as special cases. First, an equilibrium existence theorem for one person games is proved in locally G-convex spaces.. As applications, some new existence theorems of solutions for the GVQEP are established in noncompact locally G-convex spaces. These results and argument methods are new and completely different from that in recent literature.展开更多
In this paper, two kinds of parametric generalized vector quasi-equilibrium problems are introduced and the relations between them are studied. The upper and lower semicontinuity of their solution sets to parameters a...In this paper, two kinds of parametric generalized vector quasi-equilibrium problems are introduced and the relations between them are studied. The upper and lower semicontinuity of their solution sets to parameters are investigated.展开更多
A new class of locally finite continuous topological spaces (for short, locally FC-spaces) and a class of system of generalized vector quasi-equilibrium problems are introduced. By applying a generalized Himmelberg ...A new class of locally finite continuous topological spaces (for short, locally FC-spaces) and a class of system of generalized vector quasi-equilibrium problems are introduced. By applying a generalized Himmelberg type fixed point theorem for a set-valued mapping with KKM-property due to the author, a collectively fixed point and an equilibrium existence theorem of generalized game are first proved in locally FC-spaces. By applying our equilibrium existence theorem of generalized game, some new existence theorems of equilibrium points for the system of generalized vector quasi-equilibrium problems are proved in locally FC-spaces. These theorems improve, unify and generalize many known results in the literatures.展开更多
Let X, Y be two finite-dimensional topological vector spaces, Z a Hausdorff topological vector space, K C X and D C Z be two nonempty sets, C be a pointed, closed, and convex cone in Y with int C ≠θ Let S : K → 2^...Let X, Y be two finite-dimensional topological vector spaces, Z a Hausdorff topological vector space, K C X and D C Z be two nonempty sets, C be a pointed, closed, and convex cone in Y with int C ≠θ Let S : K → 2^K and T : K → 2^D be two multivalued mappings, and φ : K × D × K → Y be a trifunction. In this paper, we consider the generalized vector quasi-equilibrium problem, which is formulated by finding X∈ K and y∈ T(x) such that x∈ E S(x) and φ(x,y, u) (∈/) -int C for all u ∈ S(x). We establish an existence result in which T is not supposed to have any continuity property. Our results extend and improve the corresponding results of Cubiotti, Yao and Guo.展开更多
In this paper, a system of generalized symmetric vector quasi-equilibrium problems for set-valued mappings is introduced. By using a scalarization method and a fixed-point theorem, the existence result for its solutio...In this paper, a system of generalized symmetric vector quasi-equilibrium problems for set-valued mappings is introduced. By using a scalarization method and a fixed-point theorem, the existence result for its solution is established. The main result extends the corresponding results in Fu (J. Math. Anal. Appl. 285, 708–713, 2003) and Zhang, Chen and Li (OR Transactions 10, 24–32, 2006).展开更多
In this article, four new classes of systems of generalized vector quasi-equilibrium problems are introduced and studied in FC-spaces without convexity structure. The notions of Ci(x)-FC-partially diagonally quasico...In this article, four new classes of systems of generalized vector quasi-equilibrium problems are introduced and studied in FC-spaces without convexity structure. The notions of Ci(x)-FC-partially diagonally quasiconvex, Ci(x)-FC-quasiconvex, and Ci(x)-FC- quasiconvex-like for set-valued mappings are also introduced in FC-spaces. By applying these notions and a maximal element theorem, the nonemptyness and compactness of solution sets for four classes of systems of generalized vector quasi-equilibrium problems are proved in noncompact FC-spaces. As applications, some new existence theorems of solutions for mathematical programs with system of generalized vector quasi-equilibrium constraints are obtained in FC-spaces. These results improve and generalize some recent known results in literature.展开更多
By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established...By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.展开更多
A novel method based on the relevance vector machine(RVM) for the inverse scattering problem is presented in this paper.The nonlinearity and the ill-posedness inherent in this problem are simultaneously considered.T...A novel method based on the relevance vector machine(RVM) for the inverse scattering problem is presented in this paper.The nonlinearity and the ill-posedness inherent in this problem are simultaneously considered.The nonlinearity is embodied in the relation between the scattered field and the target property,which can be obtained through the RVM training process.Besides,rather than utilizing regularization,the ill-posed nature of the inversion is naturally accounted for because the RVM can produce a probabilistic output.Simulation results reveal that the proposed RVM-based approach can provide comparative performances in terms of accuracy,convergence,robustness,generalization,and improved performance in terms of sparse property in comparison with the support vector machine(SVM) based approach.展开更多
A class of quasi-equilibrium problems and a class of constrained multiobjective games were introduced and studied in generalized convex spaces without linear structure. First, two existence theorems of solutions for q...A class of quasi-equilibrium problems and a class of constrained multiobjective games were introduced and studied in generalized convex spaces without linear structure. First, two existence theorems of solutions for quasi-equilibrium problems are proved in noncompact generalized convex spaces. Then, ar applications of the quasi-equilibrium existence theorem, several existence theorems of weighted Nash-equilibria and Pareto equilibria for the constrained multiobjective games are established in noncompact generalized convex spaces. These theorems improve, unify, and generalize the corresponding results of the multiobjective games in recent literatures.展开更多
By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established...By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.展开更多
In this article, we study Levitin-Polyak type well-posedness for generalized vector equilibrium problems with abstract and functional constraints. Criteria and characterizations for these types of well-posednesses are...In this article, we study Levitin-Polyak type well-posedness for generalized vector equilibrium problems with abstract and functional constraints. Criteria and characterizations for these types of well-posednesses are given.展开更多
In this paper, we introduce a concept of quasi C-lower semicontinuity for setvalued mapping and provide a vector version of Ekeland's theorem related to set-valued vector equilibrium problems. As applications, we der...In this paper, we introduce a concept of quasi C-lower semicontinuity for setvalued mapping and provide a vector version of Ekeland's theorem related to set-valued vector equilibrium problems. As applications, we derive an existence theorem of weakly efficient solution for set-valued vector equilibrium problems without the assumption of convexity of the constraint set and the assumptions of convexity and monotonicity of the set-valued mapping. We also obtain an existence theorem of ε-approximate solution for set-valued vector equilibrium problems without the assumptions of compactness and convexity of the constraint set.展开更多
The aim of this paper is to study the relationship among Minty vector variational-like inequality problem, Stampacchia vector variational-like inequality problem and vector optimization problem involving (G, α)-invex...The aim of this paper is to study the relationship among Minty vector variational-like inequality problem, Stampacchia vector variational-like inequality problem and vector optimization problem involving (G, α)-invex functions. Furthermore, we establish equivalence among the solutions of weak formulations of Minty vector variational-like inequality problem, Stampacchia vector variational-like inequality problem and weak efficient solution of vector optimization problem under the assumption of (G, α)-invex functions. Examples are provided to elucidate our results.展开更多
By using Fort theorem the generic stability result for the system of generalized vector equilibrium problems is established. Further, by proving the existence and connectivity of minimal essential set the existence re...By using Fort theorem the generic stability result for the system of generalized vector equilibrium problems is established. Further, by proving the existence and connectivity of minimal essential set the existence result of essential components in the solution set is derived.展开更多
In this article, we consider a class of compound vector-valued problem on upper-half plane C+, which consists of vector Riemann problem along a closed contour in C+ with matrix coefficient in H61der class and vector...In this article, we consider a class of compound vector-valued problem on upper-half plane C+, which consists of vector Riemann problem along a closed contour in C+ with matrix coefficient in H61der class and vector Hilbert problem on the real axis with essential bounded measurable matrix coefficient. Under appropriate assumption we obtain its solution by use of Corona theorem and factorization of matrix functions in decomposed Banach algebras.展开更多
Cone-convex, cone-monotonic and positively continuous homogeneous operators are used as duality variables and the Lagrange duality of vector maximization problem in Banach space is discussed. The results are the exten...Cone-convex, cone-monotonic and positively continuous homogeneous operators are used as duality variables and the Lagrange duality of vector maximization problem in Banach space is discussed. The results are the extension of Ref[1,3,4] to some extent.The only tool used in the proof of theorem is Eidelheit separated theorem of two convex sets.展开更多
In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-...In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-uniform spaces without convexity structure. By using the KKM type theorem and Himmelberg type fixed point theorem proposed by the author, some new existence theorems of solutions for the systems of generalized vector quasi-variational inclusion problems are proved. As to its applications, we obtain some existence results of solutions for systems of generalized vector quasi-optimization problems.展开更多
By a coincidence theorem, some existence theorems of solutions are proved for four types of generalized vector equilibrium problems with moving cones. Applications to the generalized semi-infinite programs with the ge...By a coincidence theorem, some existence theorems of solutions are proved for four types of generalized vector equilibrium problems with moving cones. Applications to the generalized semi-infinite programs with the generalized vector equilibrium constraints under the mild conditions are also given. The results of this paper unify and improve the corresponding results in the previous literature.展开更多
基金This project was supported by the NSF of Sichuan Education of China(2003A081)and SZD0406
文摘By applying a maximal element theorem on product FC-space due to author, some new equilibrium existence theorems for generalized games with fuzzy constraint correspondences are proved in FC-spaces. By using these equilibrium existence theorems, some new existence theorems of solutions for the system of generalized vector quasi-equilibrium problems are established in noncompact product FC-spaces. These results improve and generalize some recent results in literature to product FC-spaces without any convexity structure.
基金Project supported by the National Natural Science Foundation of China (Nos.10171118 and 70432001) the Applied Basic Research Foundation of Chongqing(No.030801) the Natural Science Foundation of Chongqing(No.8409) and the Postdoctoral Science Foundation of China
文摘A new system of vector quasi-equilibrium problems is introduced and its existence of solution is proved. As applications, some existence results of weak Pareto equilibrium for both constrained multicriteria games and multicriteria games without constrained correspondences are also shown.
文摘Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector variational inequality problems, quasi-equilibrium problems and quasi-variational inequality problems as special cases. First, an equilibrium existence theorem for one person games is proved in locally G-convex spaces.. As applications, some new existence theorems of solutions for the GVQEP are established in noncompact locally G-convex spaces. These results and argument methods are new and completely different from that in recent literature.
基金The NSF(10871226) of Chinathe NSF(ZR2009AL006) of Shandong Province
文摘In this paper, two kinds of parametric generalized vector quasi-equilibrium problems are introduced and the relations between them are studied. The upper and lower semicontinuity of their solution sets to parameters are investigated.
基金This project is supported by the NSF of Sichuan Education Department of China (2003A081 and SZD0406)
文摘A new class of locally finite continuous topological spaces (for short, locally FC-spaces) and a class of system of generalized vector quasi-equilibrium problems are introduced. By applying a generalized Himmelberg type fixed point theorem for a set-valued mapping with KKM-property due to the author, a collectively fixed point and an equilibrium existence theorem of generalized game are first proved in locally FC-spaces. By applying our equilibrium existence theorem of generalized game, some new existence theorems of equilibrium points for the system of generalized vector quasi-equilibrium problems are proved in locally FC-spaces. These theorems improve, unify and generalize many known results in the literatures.
基金the Applied Research Project of Sichuan Province(05JY029-009-1)
文摘Let X, Y be two finite-dimensional topological vector spaces, Z a Hausdorff topological vector space, K C X and D C Z be two nonempty sets, C be a pointed, closed, and convex cone in Y with int C ≠θ Let S : K → 2^K and T : K → 2^D be two multivalued mappings, and φ : K × D × K → Y be a trifunction. In this paper, we consider the generalized vector quasi-equilibrium problem, which is formulated by finding X∈ K and y∈ T(x) such that x∈ E S(x) and φ(x,y, u) (∈/) -int C for all u ∈ S(x). We establish an existence result in which T is not supposed to have any continuity property. Our results extend and improve the corresponding results of Cubiotti, Yao and Guo.
基金the National Natural Science Foundation of China (No.60574073)the Natural Science Foundation Project of Chongqing Science and Technology Commission (No.2007BB6117)
文摘In this paper, a system of generalized symmetric vector quasi-equilibrium problems for set-valued mappings is introduced. By using a scalarization method and a fixed-point theorem, the existence result for its solution is established. The main result extends the corresponding results in Fu (J. Math. Anal. Appl. 285, 708–713, 2003) and Zhang, Chen and Li (OR Transactions 10, 24–32, 2006).
基金supported by the Scientific Research Fun of Sichuan Normal University (09ZDL04)the Sichuan Province Leading Academic Discipline Project (SZD0406)
文摘In this article, four new classes of systems of generalized vector quasi-equilibrium problems are introduced and studied in FC-spaces without convexity structure. The notions of Ci(x)-FC-partially diagonally quasiconvex, Ci(x)-FC-quasiconvex, and Ci(x)-FC- quasiconvex-like for set-valued mappings are also introduced in FC-spaces. By applying these notions and a maximal element theorem, the nonemptyness and compactness of solution sets for four classes of systems of generalized vector quasi-equilibrium problems are proved in noncompact FC-spaces. As applications, some new existence theorems of solutions for mathematical programs with system of generalized vector quasi-equilibrium constraints are obtained in FC-spaces. These results improve and generalize some recent known results in literature.
文摘By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61071022)the Graduate Student Research and Innovation Program of Jiangsu Province,China (Grant No. CXZZ11-0381)
文摘A novel method based on the relevance vector machine(RVM) for the inverse scattering problem is presented in this paper.The nonlinearity and the ill-posedness inherent in this problem are simultaneously considered.The nonlinearity is embodied in the relation between the scattered field and the target property,which can be obtained through the RVM training process.Besides,rather than utilizing regularization,the ill-posed nature of the inversion is naturally accounted for because the RVM can produce a probabilistic output.Simulation results reveal that the proposed RVM-based approach can provide comparative performances in terms of accuracy,convergence,robustness,generalization,and improved performance in terms of sparse property in comparison with the support vector machine(SVM) based approach.
文摘A class of quasi-equilibrium problems and a class of constrained multiobjective games were introduced and studied in generalized convex spaces without linear structure. First, two existence theorems of solutions for quasi-equilibrium problems are proved in noncompact generalized convex spaces. Then, ar applications of the quasi-equilibrium existence theorem, several existence theorems of weighted Nash-equilibria and Pareto equilibria for the constrained multiobjective games are established in noncompact generalized convex spaces. These theorems improve, unify, and generalize the corresponding results of the multiobjective games in recent literatures.
文摘By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.
基金supported by the National Science Foundation of China and Shanghai Pujian Program
文摘In this article, we study Levitin-Polyak type well-posedness for generalized vector equilibrium problems with abstract and functional constraints. Criteria and characterizations for these types of well-posednesses are given.
基金supported by the National Natural Science Foundation of China (11061023)
文摘In this paper, we introduce a concept of quasi C-lower semicontinuity for setvalued mapping and provide a vector version of Ekeland's theorem related to set-valued vector equilibrium problems. As applications, we derive an existence theorem of weakly efficient solution for set-valued vector equilibrium problems without the assumption of convexity of the constraint set and the assumptions of convexity and monotonicity of the set-valued mapping. We also obtain an existence theorem of ε-approximate solution for set-valued vector equilibrium problems without the assumptions of compactness and convexity of the constraint set.
文摘The aim of this paper is to study the relationship among Minty vector variational-like inequality problem, Stampacchia vector variational-like inequality problem and vector optimization problem involving (G, α)-invex functions. Furthermore, we establish equivalence among the solutions of weak formulations of Minty vector variational-like inequality problem, Stampacchia vector variational-like inequality problem and weak efficient solution of vector optimization problem under the assumption of (G, α)-invex functions. Examples are provided to elucidate our results.
基金Supported by NSF of Chongqing and Science Foundations of Chongqing Jia1otong University
文摘By using Fort theorem the generic stability result for the system of generalized vector equilibrium problems is established. Further, by proving the existence and connectivity of minimal essential set the existence result of essential components in the solution set is derived.
基金supported by the National Natural Science Foundation of China(10471107)RFDP of Higher Education(20060486001)
文摘In this article, we consider a class of compound vector-valued problem on upper-half plane C+, which consists of vector Riemann problem along a closed contour in C+ with matrix coefficient in H61der class and vector Hilbert problem on the real axis with essential bounded measurable matrix coefficient. Under appropriate assumption we obtain its solution by use of Corona theorem and factorization of matrix functions in decomposed Banach algebras.
文摘Cone-convex, cone-monotonic and positively continuous homogeneous operators are used as duality variables and the Lagrange duality of vector maximization problem in Banach space is discussed. The results are the extension of Ref[1,3,4] to some extent.The only tool used in the proof of theorem is Eidelheit separated theorem of two convex sets.
基金supported by the Natural Science Foundation of Sichuan Education Department of China(No. 07ZA092)the Sichuan Province Leading Academic Discipline Project (No. SZD0406)
文摘In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-uniform spaces without convexity structure. By using the KKM type theorem and Himmelberg type fixed point theorem proposed by the author, some new existence theorems of solutions for the systems of generalized vector quasi-variational inclusion problems are proved. As to its applications, we obtain some existence results of solutions for systems of generalized vector quasi-optimization problems.
基金Project supported by the Key Program of the National Natural Science Foundation of China(NSFC)(No.70831005)the National Natural Science Foundation of China(Nos.11171237,11226228,and 11201214)+1 种基金the Science and Technology Program Project of Henan Province of China(No.122300410256)the Natural Science Foundation of Henan Education Department of China(No.2011B110025)
文摘By a coincidence theorem, some existence theorems of solutions are proved for four types of generalized vector equilibrium problems with moving cones. Applications to the generalized semi-infinite programs with the generalized vector equilibrium constraints under the mild conditions are also given. The results of this paper unify and improve the corresponding results in the previous literature.