Some studies about road vector map change detection were done in this paper. Firstly, on the basis of old road vector data, the original high resolution remote sensing image was cut into segments. Then, gray analysis ...Some studies about road vector map change detection were done in this paper. Firstly, on the basis of old road vector data, the original high resolution remote sensing image was cut into segments. Then, gray analysis and edge extraction of those segments were done so that changes of roads could be detected. Finally, according to the vector data and gray information of roads which were not changed, road templates were extracted and saved automatically. This method was performed on the World View high resolution image of certain parts in the country. The detection result shows that detection correctness is 79.56% and completeness can reach 97.72%. Moreover, the extracted road templates are essentials for the template matching method of road extraction.展开更多
A method for road boundary detection and tracking using laser ladar with respect to a vehicle' s local coordinates is proposed. It can be applied to different types of road conditions, such as roads with or without c...A method for road boundary detection and tracking using laser ladar with respect to a vehicle' s local coordinates is proposed. It can be applied to different types of road conditions, such as roads with or without curbs, having relatively rough road surface and with obstacles on road surface. In the method, some line segments are extracted after a series of preprocessing on range data. The extracted line segments are combined and further selected. They are then united to match the road models and generate the road boundary points which are tracked by Kalman filter. Then the obtained road boundary points are transformed to build a precise vector map by least squares fitting algorithm. These fitted line segments represent road boundary vectors. The vector map is precise enough to provide ample road information such as the orientation of road, the road width and the passable road region. Finally, extensive experiments conducted in urban and semi-urban environment demonstrate the robustness, effectiveness and viability of the proposed method.展开更多
In this paper, an approach of roads network extraction from high resolution satellite images is presented. First, the approach extracts road surface from satellite image using one-class support vector machine (SVM)....In this paper, an approach of roads network extraction from high resolution satellite images is presented. First, the approach extracts road surface from satellite image using one-class support vector machine (SVM). Second, the road topology is built from the road surface. The last output of the approach is a series of road segments which is represented by a sequence of points as well as the topological relations among them. The approach includes four steps. In the first step one-class support vector machine is used for classifying pixel of the satellite images to road class or non-road class. In the second step filling holes and connecting gaps for the SVM's classification result is applied through mathematical morphology close operation. In the third step the road segment is extracted by a series of operations which include skeletonization, thin, branch pruning and road segmentation. In the last step a geometrical adjustment process is applied through analyzing the road segment curvature. The experiment results demonstrate its robustness and viability on extracting road network from high resolution satellite images.展开更多
This paper presents an approach of model-oriented road detection based on trapezoidal model proposed by H. Jeong, et al and fuzzy Support Vector Machine (SVM). Firstly, the frames ex-tracted from the video are preproc...This paper presents an approach of model-oriented road detection based on trapezoidal model proposed by H. Jeong, et al and fuzzy Support Vector Machine (SVM). Firstly, the frames ex-tracted from the video are preprocessed by Pulse Coupled Neural Network (PCNN), and then handled by Kalman filter and Expectation Maximization (EM) algorithms. Next, according to the road's dif-ferent feathers, using fuzzy algorithm chooses a corresponding SVM for further lane detection, and then using morphological filters obtains the final detecting result. For different types of roads, this method uses fuzzy algorithm to choose different SVMs. Furthermore, in preprocessing using PCNN removes the shadow in the road to reduce the effect of illumination variations. Experimental results show that our method can receive better lane detecting results than the trapezoidal model and BP proposed by H. Jeong, et al..展开更多
文摘Some studies about road vector map change detection were done in this paper. Firstly, on the basis of old road vector data, the original high resolution remote sensing image was cut into segments. Then, gray analysis and edge extraction of those segments were done so that changes of roads could be detected. Finally, according to the vector data and gray information of roads which were not changed, road templates were extracted and saved automatically. This method was performed on the World View high resolution image of certain parts in the country. The detection result shows that detection correctness is 79.56% and completeness can reach 97.72%. Moreover, the extracted road templates are essentials for the template matching method of road extraction.
基金Supported by the National Natural Science Foundation of China (61174178)
文摘A method for road boundary detection and tracking using laser ladar with respect to a vehicle' s local coordinates is proposed. It can be applied to different types of road conditions, such as roads with or without curbs, having relatively rough road surface and with obstacles on road surface. In the method, some line segments are extracted after a series of preprocessing on range data. The extracted line segments are combined and further selected. They are then united to match the road models and generate the road boundary points which are tracked by Kalman filter. Then the obtained road boundary points are transformed to build a precise vector map by least squares fitting algorithm. These fitted line segments represent road boundary vectors. The vector map is precise enough to provide ample road information such as the orientation of road, the road width and the passable road region. Finally, extensive experiments conducted in urban and semi-urban environment demonstrate the robustness, effectiveness and viability of the proposed method.
基金Supported by National Natural Science Foundation of China(NSFC)(61232014,61421062,61472010)National Key Technology R&D Program of China(2015BAK01B06)
文摘In this paper, an approach of roads network extraction from high resolution satellite images is presented. First, the approach extracts road surface from satellite image using one-class support vector machine (SVM). Second, the road topology is built from the road surface. The last output of the approach is a series of road segments which is represented by a sequence of points as well as the topological relations among them. The approach includes four steps. In the first step one-class support vector machine is used for classifying pixel of the satellite images to road class or non-road class. In the second step filling holes and connecting gaps for the SVM's classification result is applied through mathematical morphology close operation. In the third step the road segment is extracted by a series of operations which include skeletonization, thin, branch pruning and road segmentation. In the last step a geometrical adjustment process is applied through analyzing the road segment curvature. The experiment results demonstrate its robustness and viability on extracting road network from high resolution satellite images.
基金Supported by the National Natural Science Foundation of China (No. 60671062)the National Basic Research Program of China (2005CB724303)
文摘This paper presents an approach of model-oriented road detection based on trapezoidal model proposed by H. Jeong, et al and fuzzy Support Vector Machine (SVM). Firstly, the frames ex-tracted from the video are preprocessed by Pulse Coupled Neural Network (PCNN), and then handled by Kalman filter and Expectation Maximization (EM) algorithms. Next, according to the road's dif-ferent feathers, using fuzzy algorithm chooses a corresponding SVM for further lane detection, and then using morphological filters obtains the final detecting result. For different types of roads, this method uses fuzzy algorithm to choose different SVMs. Furthermore, in preprocessing using PCNN removes the shadow in the road to reduce the effect of illumination variations. Experimental results show that our method can receive better lane detecting results than the trapezoidal model and BP proposed by H. Jeong, et al..