Cellular Automata(CA) is widely used for the simulation of land use changes. This study applied a vector-based CA model to simulate land use change in order to minimize or eliminate the scale sensitivity in traditiona...Cellular Automata(CA) is widely used for the simulation of land use changes. This study applied a vector-based CA model to simulate land use change in order to minimize or eliminate the scale sensitivity in traditional raster-based CA model. The cells of vector-based CA model are presented according to the shapes and attributes of geographic entities, and the transition rules of vector-based CA model are improved by taking spatial variables of the study area into consideration. The vector-based CA model is applied to simulate land use changes in downtown of Qidong City, Jiangsu Province, China and its validation is confirmed by the methods of visual assessment and spatial accuracy. The simulation result of vector-based CA model reveals that nearly 75% of newly increased urban cells are located in the northwest and southwest parts of the study area from 2002 to 2007, which is in consistent with real land use map. In addition, the simulation results of the vector-based and raster-based CA models are compared to real land use data and their spatial accuracies are found to be 84.0% and 81.9%, respectively. In conclusion, results from this study indicate that the vector-based CA model is a practical and applicable method for the simulation of urbanization processes.展开更多
The accessibility provided by the transportation system plays an essential role in driving urban growth and urban functional land use changes.Conventional studies on land use simulation usually simplified the accessib...The accessibility provided by the transportation system plays an essential role in driving urban growth and urban functional land use changes.Conventional studies on land use simulation usually simplified the accessibility as proximities and adopted the grid-based simulation strategy,leading to the insufficiencies of characterizing spatial geometry of land parcels and simulating subtle land use changes among urban functional types.To overcome these limita-tions,an Accessibility-interacted Vector-based Cellular Automata(A-VCA)model was proposed for the better simulation of realistic land use change among different urban functional types.The accessibility at both local and zonal scales derived from actual travel time data was considered as a key driver of fine-scale urban land use changes and was integrated into the vector-based CA simulation process.The proposed A-VCA model was tested through the simulation of urban land use changes in the City of Toronto,Canada,during 2012-2016.A vector-based CA without considering the driving factor of accessibility(VCA)and a popular grid-based CA model(Future Land Use Simulation,FLUS)were also implemented for compar-isons.The simulation results reveal that the proposed A-VCA model is capable of simulating fine-scale urban land use changes with satisfactory accuracy and good morphological feature(kappa=0.907,figure of merit=0.283,and cumulative producer’s accuracy=72.83%±1.535%).The comparison also shows significant outperformance of the A-VCA model against the VCA and FLUS models,suggesting the effectiveness of the accessibility-interactive mechanism and vector-based simulation strategy.The proposed model provides new tools for a better simula-tion of fine-scale land use changes and can be used in assisting the formulation of urban and transportation planning.展开更多
Hepatitis C virus(HCV)is responsible for no less than 71 million people chronically infected and is one of the most frequent indications for liver transplanta-tion worldwide.Despite direct-acting antiviral therapies f...Hepatitis C virus(HCV)is responsible for no less than 71 million people chronically infected and is one of the most frequent indications for liver transplanta-tion worldwide.Despite direct-acting antiviral therapies fuel optimism in controlling HCV infections,there are several obstacles regarding treatment accessibility and reinfection continues to remain a possibility.Indeed,the majority of new HCV infections in developed countries occur in people who inject drugs and are more plausible to get reinfected.To achieve global epidemic control of this virus the development of an effective prophylactic or therapeutic vaccine becomes a must.The coronavirus disease 19(COVID-19)pandemic led to auspicious vaccine development against severe acute respiratory syndrome coronavirus-2(SARSCoV-2)virus,which has renewed interest on fighting HCV epidemic with vaccination.The aim of this review is to highlight the current situation of HCV vaccine candidates designed to prevent and/or to reduce HCV infectious cases and their complications.We will emphasize on some of the crossroads encountered during vaccine development against this insidious virus,together with some key aspects of HCV immunology which have,so far,ham-pered the progress in this area.The main focus will be on nucleic acid-based as well as recombinant viral vector-based vaccine candidates as the most novel vaccine approaches,some of which have been recently and successfully employed for SARS-CoV-2 vaccines.Finally,some ideas will be presented on which methods to explore for the design of live-attenuated vaccines against HCV.展开更多
Wind energy has posed new challenges in both transmission and distribution systems owing to its uncertain nature. The effect of wind turbines (WTs) on the actual payments charged by upstream networks to distribution s...Wind energy has posed new challenges in both transmission and distribution systems owing to its uncertain nature. The effect of wind turbines (WTs) on the actual payments charged by upstream networks to distribution system companies (DISCOs) is one challenge. Moreover, when the grid-connected inverters of WT operate in the lead or lag modes, WTs absorb or inject reactive power from the system. This paper proposes an approach to assess the importance of operation modes of WTs to minimize the costs by DISCOs in the presence of system uncertainties. Accordingly, an optimization problem is formulated to minimize the costs to DISCO by determining the optimal locations and sizes of WTs in optimally reconfigured distribution systems. In addition, an improved vector-based swarm optimization (IVBSO) algorithm is proposed because it is highly suitable for vector-based problems. Two distribution systems are used in the simulations to evaluate the proposed algorithm. Firstly, the capabilities of the IVBSO algorithm to determine better solutions over other heuristic algorithms are confirmed using the IEEE 33-bus test system. Secondly, the BijanAbad distribution system (BDS) is used to demonstrate the effectiveness of the proposed optimization problem. Accordingly, the distribution system model, cumulative distribution function of wind speed, and load profile are all extracted from the actual data of the BijanAbad region. Finally, the optimization problem is applied to BDS in both the lead and lag modes of WTs. Results indicate that the total costs of DISCO are lower when WTs operate in the lag mode than in the lead mode.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41101349)Surveying and Mapping Scientific Research Projects of Jiangsu Province(No.JSCHKY201304)+1 种基金Program of Natural Science Research of Jiangsu Higher Education Institutions of China(No.13KJB420003)Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Cellular Automata(CA) is widely used for the simulation of land use changes. This study applied a vector-based CA model to simulate land use change in order to minimize or eliminate the scale sensitivity in traditional raster-based CA model. The cells of vector-based CA model are presented according to the shapes and attributes of geographic entities, and the transition rules of vector-based CA model are improved by taking spatial variables of the study area into consideration. The vector-based CA model is applied to simulate land use changes in downtown of Qidong City, Jiangsu Province, China and its validation is confirmed by the methods of visual assessment and spatial accuracy. The simulation result of vector-based CA model reveals that nearly 75% of newly increased urban cells are located in the northwest and southwest parts of the study area from 2002 to 2007, which is in consistent with real land use map. In addition, the simulation results of the vector-based and raster-based CA models are compared to real land use data and their spatial accuracies are found to be 84.0% and 81.9%, respectively. In conclusion, results from this study indicate that the vector-based CA model is a practical and applicable method for the simulation of urbanization processes.
基金the National Key R&D Program of China[Grant Number 2019YFA0607203]the National Natural Science Foundation of China[Grant Number 42001326 and 42171410]the Natural Science Foundation of Guangdong Province of China[Grant Number 2021A1515011192].
文摘The accessibility provided by the transportation system plays an essential role in driving urban growth and urban functional land use changes.Conventional studies on land use simulation usually simplified the accessibility as proximities and adopted the grid-based simulation strategy,leading to the insufficiencies of characterizing spatial geometry of land parcels and simulating subtle land use changes among urban functional types.To overcome these limita-tions,an Accessibility-interacted Vector-based Cellular Automata(A-VCA)model was proposed for the better simulation of realistic land use change among different urban functional types.The accessibility at both local and zonal scales derived from actual travel time data was considered as a key driver of fine-scale urban land use changes and was integrated into the vector-based CA simulation process.The proposed A-VCA model was tested through the simulation of urban land use changes in the City of Toronto,Canada,during 2012-2016.A vector-based CA without considering the driving factor of accessibility(VCA)and a popular grid-based CA model(Future Land Use Simulation,FLUS)were also implemented for compar-isons.The simulation results reveal that the proposed A-VCA model is capable of simulating fine-scale urban land use changes with satisfactory accuracy and good morphological feature(kappa=0.907,figure of merit=0.283,and cumulative producer’s accuracy=72.83%±1.535%).The comparison also shows significant outperformance of the A-VCA model against the VCA and FLUS models,suggesting the effectiveness of the accessibility-interactive mechanism and vector-based simulation strategy.The proposed model provides new tools for a better simula-tion of fine-scale land use changes and can be used in assisting the formulation of urban and transportation planning.
基金Supported by Programa de Desarrollo de las Ciencias Basicas(PEDECIBA)Comision Academica de Posgrados,Universidad de la Republica Uruguay(UdelaR)Comision Sectorial de Investigacion Cientifica(CSIC,I+D Project ID288).
文摘Hepatitis C virus(HCV)is responsible for no less than 71 million people chronically infected and is one of the most frequent indications for liver transplanta-tion worldwide.Despite direct-acting antiviral therapies fuel optimism in controlling HCV infections,there are several obstacles regarding treatment accessibility and reinfection continues to remain a possibility.Indeed,the majority of new HCV infections in developed countries occur in people who inject drugs and are more plausible to get reinfected.To achieve global epidemic control of this virus the development of an effective prophylactic or therapeutic vaccine becomes a must.The coronavirus disease 19(COVID-19)pandemic led to auspicious vaccine development against severe acute respiratory syndrome coronavirus-2(SARSCoV-2)virus,which has renewed interest on fighting HCV epidemic with vaccination.The aim of this review is to highlight the current situation of HCV vaccine candidates designed to prevent and/or to reduce HCV infectious cases and their complications.We will emphasize on some of the crossroads encountered during vaccine development against this insidious virus,together with some key aspects of HCV immunology which have,so far,ham-pered the progress in this area.The main focus will be on nucleic acid-based as well as recombinant viral vector-based vaccine candidates as the most novel vaccine approaches,some of which have been recently and successfully employed for SARS-CoV-2 vaccines.Finally,some ideas will be presented on which methods to explore for the design of live-attenuated vaccines against HCV.
文摘Wind energy has posed new challenges in both transmission and distribution systems owing to its uncertain nature. The effect of wind turbines (WTs) on the actual payments charged by upstream networks to distribution system companies (DISCOs) is one challenge. Moreover, when the grid-connected inverters of WT operate in the lead or lag modes, WTs absorb or inject reactive power from the system. This paper proposes an approach to assess the importance of operation modes of WTs to minimize the costs by DISCOs in the presence of system uncertainties. Accordingly, an optimization problem is formulated to minimize the costs to DISCO by determining the optimal locations and sizes of WTs in optimally reconfigured distribution systems. In addition, an improved vector-based swarm optimization (IVBSO) algorithm is proposed because it is highly suitable for vector-based problems. Two distribution systems are used in the simulations to evaluate the proposed algorithm. Firstly, the capabilities of the IVBSO algorithm to determine better solutions over other heuristic algorithms are confirmed using the IEEE 33-bus test system. Secondly, the BijanAbad distribution system (BDS) is used to demonstrate the effectiveness of the proposed optimization problem. Accordingly, the distribution system model, cumulative distribution function of wind speed, and load profile are all extracted from the actual data of the BijanAbad region. Finally, the optimization problem is applied to BDS in both the lead and lag modes of WTs. Results indicate that the total costs of DISCO are lower when WTs operate in the lag mode than in the lead mode.