期刊文献+
共找到2,876篇文章
< 1 2 144 >
每页显示 20 50 100
Product quality prediction based on RBF optimized by firefly algorithm 被引量:2
1
作者 HAN Huihui WANG Jian +1 位作者 CHEN Sen YAN Manting 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期105-117,共13页
With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality pred... With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality. 展开更多
关键词 product quality prediction data pre-processing radial basis function swarm intelligence optimization algorithm
下载PDF
Navigating challenges and opportunities of machine learning in hydrogen catalysis and production processes: Beyond algorithm development
2
作者 Mohd Nur Ikhmal Salehmin Sieh Kiong Tiong +5 位作者 Hassan Mohamed Dallatu Abbas Umar Kai Ling Yu Hwai Chyuan Ong Saifuddin Nomanbhay Swee Su Lim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期223-252,共30页
With the projected global surge in hydrogen demand, driven by increasing applications and the imperative for low-emission hydrogen, the integration of machine learning(ML) across the hydrogen energy value chain is a c... With the projected global surge in hydrogen demand, driven by increasing applications and the imperative for low-emission hydrogen, the integration of machine learning(ML) across the hydrogen energy value chain is a compelling avenue. This review uniquely focuses on harnessing the synergy between ML and computational modeling(CM) or optimization tools, as well as integrating multiple ML techniques with CM, for the synthesis of diverse hydrogen evolution reaction(HER) catalysts and various hydrogen production processes(HPPs). Furthermore, this review addresses a notable gap in the literature by offering insights, analyzing challenges, and identifying research prospects and opportunities for sustainable hydrogen production. While the literature reflects a promising landscape for ML applications in hydrogen energy domains, transitioning AI-based algorithms from controlled environments to real-world applications poses significant challenges. Hence, this comprehensive review delves into the technical,practical, and ethical considerations associated with the application of ML in HER catalyst development and HPP optimization. Overall, this review provides guidance for unlocking the transformative potential of ML in enhancing prediction efficiency and sustainability in the hydrogen production sector. 展开更多
关键词 Machine learning Computational modeling HER catalyst synthesis Hydrogen energy Hydrogen production processes algorithm development
下载PDF
Sequencing Mixed-model Production Systems by Modified Multi-objective Genetic Algorithms 被引量:5
3
作者 WANG Binggang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第5期537-546,共10页
As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simul... As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simultaneously to improve the efficiency of the whole fabrication/assembly systems.By far,little research effort is devoted to sequencing problems for mixed-model fabrication/assembly systems.This paper is concerned about the sequencing problems in pull production systems which are composed of one mixed-model assembly line with limited intermediate buffers and two flexible parts fabrication flow lines with identical parallel machines and limited intermediate buffers.Two objectives are considered simultaneously:minimizing the total variation in parts consumption in the assembly line and minimizing the total makespan cost in the fabrication/assembly system.The integrated optimization framework,mathematical models and the method to construct the complete schedules for the fabrication lines according to the production sequences for the first stage in fabrication lines are presented.Since the above problems are non-deterministic polynomial-hard(NP-hard),a modified multi-objective genetic algorithm is proposed for solving the models,in which a method to generate the production sequences for the fabrication lines from the production sequences for the assembly line and a method to generate the initial population are put forward,new selection,crossover and mutation operators are designed,and Pareto ranking method and sharing function method are employed to evaluate the individuals' fitness.The feasibility and efficiency of the multi-objective genetic algorithm is shown by computational comparison with a multi-objective simulated annealing algorithm.The sequencing problems for mixed-model production systems can be solved effectively by the proposed modified multi-objective genetic algorithm. 展开更多
关键词 mixed-model production system SEQUENCING parallel machine BUFFERS multi-objective genetic algorithm multi-objective simulated annealing algorithm
下载PDF
A Genetic Algorithm-based Approach to Scheduling of Batch Production with Maximum Profit 被引量:6
4
作者 伍联营 胡仰栋 +1 位作者 徐冬梅 华贲 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第1期68-73,共6页
The optimal scheduling of multi-product batch process is studied and a new mathematics model targeting the maximum profit is proposed, which can be solved by the modified genetic algorithm (MGA) with mixed coding (seq... The optimal scheduling of multi-product batch process is studied and a new mathematics model targeting the maximum profit is proposed, which can be solved by the modified genetic algorithm (MGA) with mixed coding (sequence coding and decimal coding) developed by us. In which, the partially matched cross over (PMX) and reverse mutation are used for the sequence coding, whereas the arithmetic crossover and heteropic mutation are used for the decimal coding. In addition, the relationship between production scale and production cost is analyzed and the maximum profit is always a trade-off of the production scale and production cost. Two examples are solved to demonstrate the effectiveness of the method. 展开更多
关键词 production scheduling batch process combinatorial optimization genetic algorithm
下载PDF
MODIFIED GENETIC ALGORITHM APPLIED TO SOLVE PRODUCT FAMILY OPTIMIZATION PROBLEM 被引量:8
5
作者 CHEN Chunbao WANG Liya 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第4期106-111,共6页
The product family design problem solved by evolutionary algorithms is discussed. A successful product family design method should achieve an optimal tradeoff among a set of competing objectives, which involves maximi... The product family design problem solved by evolutionary algorithms is discussed. A successful product family design method should achieve an optimal tradeoff among a set of competing objectives, which involves maximizing commonality across the family of products and optimizing the performances of each product in the family. A 2-level chromosome structured genetic algorithm (2LCGA) is proposed to solve this class of problems and its performance is analyzed in comparing its results with those obtained with other methods. By interpreting the chromosome as a 2-level linear structure, the variable commonality genetic algorithm (GA) is constructed to vary the amount of platform commonality and automatically searches across varying levels of commonality for the platform while trying to resolve the tradeoff between commonality and individual product performance within the product family during optimization process. By incorporating a commonality assessing index to the problem formulation, the 2LCGA optimize the product platform and its corresponding family of products in a single stage, which can yield improvements in the overall performance of the product family compared with two-stage approaches (the first stage involves determining the best settings for the platform variables and values of unique variables are found for each product in the second stage). The scope of the algorithm is also expanded by introducing a classification mechanism to allow mul- tiple platforms to be considered during product family optimization, offering opportunities for superior overall design by more efficacious tradeoffs between commonality and performance. The effectiveness of 2LCGA is demonstrated through the design of a family of universal electric motors and comparison against previous results. 展开更多
关键词 product family design product platform Genetic algorithm Optimization
下载PDF
Digital Twin-based Quality Management Method for the Assembly Process of Aerospace Products with the Grey-Markov Model and Apriori Algorithm 被引量:3
6
作者 Cunbo Zhuang Ziwen Liu +3 位作者 Jianhua Liu Hailong Ma Sikuan Zhai Ying Wu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第5期66-86,共21页
The assembly process of aerospace products such as satellites and rockets has the characteristics of single-or small-batch production,a long development period,high reliability,and frequent disturbances.How to predict... The assembly process of aerospace products such as satellites and rockets has the characteristics of single-or small-batch production,a long development period,high reliability,and frequent disturbances.How to predict and avoid quality abnormalities,quickly locate their causes,and improve product assembly quality and efficiency are urgent engineering issues.As the core technology to realize the integration of virtual and physical space,digital twin(DT)technology can make full use of the low cost,high efficiency,and predictable advantages of digital space to provide a feasible solution to such problems.Hence,a quality management method for the assembly process of aerospace products based on DT is proposed.Given that traditional quality control methods for the assembly process of aerospace products are mostly post-inspection,the Grey-Markov model and T-K control chart are used with a small sample of assembly quality data to predict the value of quality data and the status of an assembly system.The Apriori algorithm is applied to mine the strong association rules related to quality data anomalies and uncontrolled assembly systems so as to solve the issue that the causes of abnormal quality are complicated and difficult to trace.The implementation of the proposed approach is described,taking the collected centroid data of an aerospace product’s cabin,one of the key quality data in the assembly process of aerospace products,as an example.A DT-based quality management system for the assembly process of aerospace products is developed,which can effectively improve the efficiency of quality management for the assembly process of aerospace products and reduce quality abnormalities. 展开更多
关键词 Quality management Digital twin Assembly process Aerospace product Grey Markov model Apriori algorithm
下载PDF
RECONFIGURABLE PRODUCTION LINE MODELING AND SCHEDULING USING PETRI NETS AND GENETIC ALGORITHM 被引量:8
7
作者 XIE Nan LI Aiping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第3期362-367,共6页
In response to the production capacity and functionality variations, a genetic algorithm (GA) embedded with deterministic timed Petri nets(DTPN) for reconfigurable production line(RPL) is proposed to solve its s... In response to the production capacity and functionality variations, a genetic algorithm (GA) embedded with deterministic timed Petri nets(DTPN) for reconfigurable production line(RPL) is proposed to solve its scheduling problem. The basic DTPN modules are presented to model the corresponding variable structures in RPL, and then the scheduling model of the whole RPL is constructed. And in the scheduling algorithm, firing sequences of the Petri nets model are used as chromosomes, thus the selection, crossover, and mutation operator do not deal with the elements in the problem space, but the elements of Petri nets model. Accordingly, all the algorithms for GA operations embedded with Petri nets model are proposed. Moreover, the new weighted single-objective optimization based on reconfiguration cost and E/T is used. The results of a DC motor RPL scheduling suggest that the presented DTPN-GA scheduling algorithm has a significant impact on RPL scheduling, and provide obvious improvements over the conventional scheduling method in practice that meets duedate, minimizes reconfiguration cost, and enhances cost effectivity. 展开更多
关键词 Reconfigurable production line Deterministic timed Petri nets (DTPN) Modeling Scheduling Genetic algorithm(GA)
下载PDF
Evapotranspiration Estimation Based on MODIS Products and Surface Energy Balance Algorithms for Land(SEBAL) Model in Sanjiang Plain,Northeast China 被引量:4
8
作者 DU Jia SONG Kaishan +2 位作者 WANG Zongming ZHANG Bai LIU Dianwei 《Chinese Geographical Science》 SCIE CSCD 2013年第1期73-91,共19页
In this study,the Surface Energy Balance Algorithms for Land(SEBAL) model and Moderate Resolution Imaging Spectroradiometer(MODIS) products from Terra satellite were combined with meteorological data to estimate evapo... In this study,the Surface Energy Balance Algorithms for Land(SEBAL) model and Moderate Resolution Imaging Spectroradiometer(MODIS) products from Terra satellite were combined with meteorological data to estimate evapotranspiration(ET) over the Sanjiang Plain,Northeast China.Land cover/land use was classified by using a recursive partitioning and regression tree with MODIS Normalized Difference Vegetation Index(NDVI) time series data,which were reconstructed based on the Savitzky-Golay filtering approach.The MODIS product Quality Assessment Science Data Sets(QA-SDS) was analyzed and all scenes with valid data covering more than 75% of the Sanjiang Plain were selected for the SEBAL modeling.This provided 12 overpasses during 184-day growing season from May 1st to October 31st,2006.Daily ET estimated by the SEBAL model was misestimaed at the range of-11.29% to 27.57% compared with that measured by Eddy Covariance system(10.52% on average).The validation results show that seasonal ET from the SEBAL model is comparable to that from ground observation within 8.86% of deviation.Our results reveal that the time series daily ET of different land cover/use increases from vegetation on-going until June or July and then decreases as vegetation senesced.Seasonal ET is lower in dry farmland(average(Ave):491 mm) and paddy field(Ave:522 mm) and increases in wetlands to more than 586 mm.As expected,higher seasonal ET values are observed for the Xingkai Lake in the southeastern part of the Sanjiang Plain(Ave:823 mm),broadleaf forest(Ave:666 mm) and mixed wood(Ave:622 mm) in the southern/western Sanjiang Plain.The ET estimation with SEBAL using MODIS products can provide decision support for operational water management issues. 展开更多
关键词 EVAPOTRANSPIRATION Surface Energy Balance algorithms for Land (SEBAL) Moderate Resolution Imaging Spectroradiome-ter (MODIS) products Sanjiang Plain China
下载PDF
Well production optimization using streamline features-based objective function and Bayesian adaptive direct search algorithm 被引量:2
9
作者 Qi-Hong Feng Shan-Shan Li +2 位作者 Xian-Min Zhang Xiao-Fei Gao Ji-Hui Ni 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2879-2894,共16页
Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.T... Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.This method spends most of computing time in objective function evaluation by reservoir numerical simulator which limits its optimization efficiency.To improve optimization efficiency,a well production optimization method using streamline features-based objective function and Bayesian adaptive direct search optimization(BADS)algorithm is established.This new objective function,which represents the water flooding potential,is extracted from streamline features.It only needs to call the streamline simulator to run one time step,instead of calling the simulator to calculate the target value at the end of development,which greatly reduces the running time of the simulator.Then the well production optimization model is established and solved by the BADS algorithm.The feasibility of the new objective function and the efficiency of this optimization method are verified by three examples.Results demonstrate that the new objective function is positively correlated with the cumulative oil production.And the BADS algorithm is superior to other common algorithms in convergence speed,solution stability and optimization accuracy.Besides,this method can significantly accelerate the speed of well production optimization process compared with the objective function calculated by other conventional methods.It can provide a more effective basis for determining the optimal well production for actual oilfield development. 展开更多
关键词 Well production Optimization efficiency Streamline simulation Streamline feature Objective function Bayesian adaptive direct search algorithm
下载PDF
Improving performance of open-pit mine production scheduling problem under grade uncertainty by hybrid algorithms 被引量:1
10
作者 Kamyar TOLOUEI Ehsan MOOSAVI +2 位作者 Amir Hossein BANGIAN TABRIZI Peyman AFZAL Abbas AGHAJANI BAZZAZI 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第9期2479-2493,共15页
One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term produ... One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term production scheduling(LTPS)of the open-pit mines.Deterministic and uncertainty-based approaches are identified as the main strategies,which have been widely used to cope with this problem.Within the last few years,many researchers have highly considered a new computational type,which is less costly,i.e.,meta-heuristic methods,so as to solve the mine design and production scheduling problem.Although the optimality of the final solution cannot be guaranteed,they are able to produce sufficiently good solutions with relatively less computational costs.In the present paper,two hybrid models between augmented Lagrangian relaxation(ALR)and a particle swarm optimization(PSO)and ALR and bat algorithm(BA)are suggested so that the LTPS problem is solved under the condition of grade uncertainty.It is suggested to carry out the ALR method on the LTPS problem to improve its performance and accelerate the convergence.Moreover,the Lagrangian coefficients are updated by using PSO and BA.The presented models have been compared with the outcomes of the ALR-genetic algorithm,the ALR-traditional sub-gradient method,and the conventional method without using the Lagrangian approach.The results indicated that the ALR is considered a more efficient approach which can solve a large-scale problem and make a valid solution.Hence,it is more effectual than the conventional method.Furthermore,the time and cost of computation are diminished by the proposed hybrid strategies.The CPU time using the ALR-BA method is about 7.4%higher than the ALR-PSO approach. 展开更多
关键词 open-pit mine long-term production scheduling grade uncertainty augmented Lagrangian relaxation particle swarm optimization algorithm bat algorithm
下载PDF
A Modified Genetic Algorithm for Product Family Optimization with Platform Specified by Information Theoretical Approach 被引量:1
11
作者 陈春宝 王丽亚 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第3期304-311,共8页
Many existing product family design methods assume a given platform, However, it is not an in-tuitive task to select the platform and unique variable within a product family. Meanwhile, most approaches are single-plat... Many existing product family design methods assume a given platform, However, it is not an in-tuitive task to select the platform and unique variable within a product family. Meanwhile, most approaches are single-platform methods, in which design variables are either shared across all product variants or not at all. While in multiple-platform design, platform variables can have special value with regard to a subset of product variants within the product family, and offer opportunities for superior overall design. An information theoretical approach incorporating fuzzy clustering and Shannon's entropy was proposed for platform variables selection in multiple-platform product family. A 2-level chromosome genetic algorithm (2LCGA) was proposed and developed for optimizing the corresponding product family in a single stage, simultaneously determining the optimal settings for the product platform and unique variables. The single-stage approach can yield im-provements in the overall performance of the product family compared with two-stage approaches, in which the first stage involves determining the best settings for the platform and values of unique variables are found for each product in the second stage. An example of design of a family of universal motors was used to verify the proposed method. 展开更多
关键词 product fainily multiple-platform genetic algorithm fuzzv clustering Shannon's entropy
下载PDF
Genetic algorithm for short-term scheduling of make-and-pack batch production process 被引量:1
12
作者 Wuthichai Wongthatsanekorn Busaba Phruksaphanrat 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第9期1475-1483,共9页
This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage ti... This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage time, batch splitting, partial equipment connectivity and transfer time. The objective is to make a production plan to satisfy all constraints while meeting demand requirement of packed products from various product families. This problem is NP-hard and the problem size is exponentially large for a realistic-sized problem. Therefore,we propose a genetic algorithm to handle this problem. Solutions to the problems are represented by chromosomes of product family sequences. These sequences are decoded to assign the resource for producing packed products according to forward assignment strategy and resource selection rules. These techniques greatly reduce unnecessary search space and improve search speed. In addition, design of experiment is carefully utilized to determine appropriate parameter settings. Ant colony optimization and Tabu search are also implemented for comparison. At the end of each heuristics, local search is applied for the packed product sequence to improve makespan. In an experimental analysis, all heuristics show the capability to solve large instances within reasonable computational time. In all problem instances, genetic algorithm averagely outperforms ant colony optimization and Tabu search with slightly longer computational time. 展开更多
关键词 Genetic algorithm Ant colony optimization Tabu search Batch scheduling Make-and-pack production Forward assignment strategy
下载PDF
Genetic Algorithm Based Production Planning for Alternative Process Production
13
作者 张发平 孙厚芳 SHAHID I.Butt 《Journal of Beijing Institute of Technology》 EI CAS 2009年第3期278-282,共5页
Production planning under flexible job shop environment is studied.A mathematic model is formulated to help improve alternative process production.This model,in which genetic algorithm is used,is expected to result in... Production planning under flexible job shop environment is studied.A mathematic model is formulated to help improve alternative process production.This model,in which genetic algorithm is used,is expected to result in better production planning,hence towards the aim of minimizing production cost under the constraints of delivery time and other scheduling conditions.By means of this algorithm,all planning schemes which could meet all requirements of the constraints within the whole solution space are exhaustively searched so as to find the optimal one.Also,a case study is given in the end to support and validate this model.Our results show that genetic algorithm is capable of locating feasible process routes to reduce production cost for certain tasks. 展开更多
关键词 alternative process production flexible job shop production planning genetic algorithm
下载PDF
Cleaner production for continuous digester processes based on hybrid Pareto genetic algorithm
14
作者 JIN Fu\|jiang, WANG Hui, LI Ping (Institute of Industrial Process Control, Zhejiang University, Hangzhou 310027, China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2003年第1期129-135,共7页
Pulping production process produces a large amount of wastewater and pollutant emitted, which has become one of the main pollution sources in pulp and paper industry. To solve this problem, it is necessary to implemen... Pulping production process produces a large amount of wastewater and pollutant emitted, which has become one of the main pollution sources in pulp and paper industry. To solve this problem, it is necessary to implement cleaner production by using modeling and optimization technology. This paper studies the modeling and multi\|objective genetic algorithms for continuous digester process. First, model is established, in which environmental pollution and saving energy factors are considered. Then hybrid genetic algorithm based on Pareto stratum\|niche count is designed for finding near\|Pareto or Pareto optimal solutions in the problem and a new genetic evaluation and selection mechanism is proposed. Finally using the real data from a pulp mill shows the results of computer simulation. Through comparing with the practical curve of digester,this method can reduce the pollutant effectively and increase the profit while keeping the pulp quality unchanged. 展开更多
关键词 cleaner production multi\|objective optimization genetic algorithm Pareto stratum concentration of residual alkali Kamyr continuous digester
下载PDF
Models and Algorithms of Production Scheduling in Tandem Cold Rolling 被引量:8
15
作者 ZHAO Jun LIU Quan-Li WANG Wei 《自动化学报》 EI CSCD 北大核心 2008年第5期565-573,共9页
在冷滚动的线安排问题的生产的复杂性被分析,也就是,它作为二部分被提出合并卷的优化和计划的滚动的批。钢卷合并的优化作为包装被一个新建议算法计算的问题(MCPP ) 的一只多重集装箱被构造,分离微分进化(DDE ) ,在这篇论文。一个... 在冷滚动的线安排问题的生产的复杂性被分析,也就是,它作为二部分被提出合并卷的优化和计划的滚动的批。钢卷合并的优化作为包装被一个新建议算法计算的问题(MCPP ) 的一只多重集装箱被构造,分离微分进化(DDE ) ,在这篇论文。一个特定的双旅行售货员问题(DTSP ) 为卷批根据进化机制计划,和一个混合启发式的方法被建模,本地搜索被介绍解决这个模型。有从安排方法的生产在这建议了纸是有效的上海 Baosteel 公司有限公司表演的真实生产数据的试验性的结果。 展开更多
关键词 冷轧 MCPP 遗传算法 差异性评估
下载PDF
Data-driven production optimization using particle swarm algorithm based on the ensemble-learning proxy model
16
作者 Shu-Yi Du Xiang-Guo Zhao +4 位作者 Chi-Yu Xie Jing-Wei Zhu Jiu-Long Wang Jiao-Sheng Yang Hong-Qing Song 《Petroleum Science》 SCIE EI CSCD 2023年第5期2951-2966,共16页
Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insuffic... Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insufficient calculation accuracy and excessive time consumption when performing production optimization.We establish an ensemble proxy-model-assisted optimization framework combining the Bayesian random forest(BRF)with the particle swarm optimization algorithm(PSO).The BRF method is implemented to construct a proxy model of the injectioneproduction system that can accurately predict the dynamic parameters of producers based on injection data and production measures.With the help of proxy model,PSO is applied to search the optimal injection pattern integrating Pareto front analysis.After experimental testing,the proxy model not only boasts higher prediction accuracy compared to deep learning,but it also requires 8 times less time for training.In addition,the injection mode adjusted by the PSO algorithm can effectively reduce the gaseoil ratio and increase the oil production by more than 10% for carbonate reservoirs.The proposed proxy-model-assisted optimization protocol brings new perspectives on the multi-objective optimization problems in the petroleum industry,which can provide more options for the project decision-makers to balance the oil production and the gaseoil ratio considering physical and operational constraints. 展开更多
关键词 production optimization Random forest The Bayesian algorithm Ensemble learning Particle swarm optimization
下载PDF
Multi-surrogate framework with an adaptive selection mechanism for production optimization
17
作者 Jia-Lin Wang Li-Ming Zhang +10 位作者 Kai Zhang Jian Wang Jian-Ping Zhou Wen-Feng Peng Fa-Liang Yin Chao Zhong Xia Yan Pi-Yang Liu Hua-Qing Zhang Yong-Fei Yang Hai Sun 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期366-383,共18页
Data-driven surrogate models that assist with efficient evolutionary algorithms to find the optimal development scheme have been widely used to solve reservoir production optimization problems.However,existing researc... Data-driven surrogate models that assist with efficient evolutionary algorithms to find the optimal development scheme have been widely used to solve reservoir production optimization problems.However,existing research suggests that the effectiveness of a surrogate model can vary depending on the complexity of the design problem.A surrogate model that has demonstrated success in one scenario may not perform as well in others.In the absence of prior knowledge,finding a promising surrogate model that performs well for an unknown reservoir is challenging.Moreover,the optimization process often relies on a single evolutionary algorithm,which can yield varying results across different cases.To address these limitations,this paper introduces a novel approach called the multi-surrogate framework with an adaptive selection mechanism(MSFASM)to tackle production optimization problems.MSFASM consists of two stages.In the first stage,a reduced-dimensional broad learning system(BLS)is used to adaptively select the evolutionary algorithm with the best performance during the current optimization period.In the second stage,the multi-objective algorithm,non-dominated sorting genetic algorithm II(NSGA-II),is used as an optimizer to find a set of Pareto solutions with good performance on multiple surrogate models.A novel optimal point criterion is utilized in this stage to select the Pareto solutions,thereby obtaining the desired development schemes without increasing the computational load of the numerical simulator.The two stages are combined using sequential transfer learning.From the two most important perspectives of an evolutionary algorithm and a surrogate model,the proposed method improves adaptability to optimization problems of various reservoir types.To verify the effectiveness of the proposed method,four 100-dimensional benchmark functions and two reservoir models are tested,and the results are compared with those obtained by six other surrogate-model-based methods.The results demonstrate that our approach can obtain the maximum net present value(NPV)of the target production optimization problems. 展开更多
关键词 production optimization Multi-surrogate models Multi-evolutionary algorithms Dimension reduction Broad learning system
下载PDF
Combinatorial reasoning-based abnormal sensor recognition method for subsea production control system
18
作者 Rui Zhang Bao-Ping Cai +3 位作者 Chao Yang Yu-Ming Zhou Yong-Hong Liu Xin-Yang Qi 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2758-2768,共11页
The subsea production system is a vital equipment for offshore oil and gas production.The control system is one of the most important parts of it.Collecting and processing the signals of subsea sensors is the only way... The subsea production system is a vital equipment for offshore oil and gas production.The control system is one of the most important parts of it.Collecting and processing the signals of subsea sensors is the only way to judge whether the subsea production control system is normal.However,subsea sensors degrade rapidly due to harsh working environments and long service time.This leads to frequent false alarm incidents.A combinatorial reasoning-based abnormal sensor recognition method for subsea production control system is proposed.A combinatorial algorithm is proposed to group sensors.The long short-term memory network(LSTM)is used to establish a single inference model.A counting-based judging method is proposed to identify abnormal sensors.Field data from an offshore platform in the South China Sea is used to demonstrate the effect of the proposed method.The results show that the proposed method can identify the abnormal sensors effectively. 展开更多
关键词 Abnormal sensor Combinatorial algorithm Fault identification Subsea production control system
下载PDF
基于Petri网和Banker’s algorithm的数字孪生车间死锁判断方法
19
作者 杨逸风 陈亚洲 +2 位作者 陈一明 林晓川 王鸿星 《图学学报》 CSCD 北大核心 2024年第3期585-593,共9页
车间生产流程中资源分配或工序安排不合理会使生产流程出现死锁现象,导致无法继续生产,大大降低车间生产效率。为解决上述问题,综合Petri网和Banker’s algorithm理论将车间死锁的形成条件分为互斥等待、占有等待、循环等待和不可剥夺4... 车间生产流程中资源分配或工序安排不合理会使生产流程出现死锁现象,导致无法继续生产,大大降低车间生产效率。为解决上述问题,综合Petri网和Banker’s algorithm理论将车间死锁的形成条件分为互斥等待、占有等待、循环等待和不可剥夺4种,并以这4种条件为基础,将死锁分为资源分配死锁、进程顺序死锁、协作对象死锁和动态资源死锁的4种不同表现形式。基于Banker’s algorithm判断死锁存在、基于改进时间可达性分析法确定车间死锁发生的具体位置,建立不同死锁表现形式下的死锁恢复策略,采用Tina和Unity 3D等软件将该方法集成到车间数字孪生系统中,实现车间流程死锁监测和预测功能。最后以某精密冲压车间零件生产过程为例进行了验证,结果表明该方法能有效实现生产流程实时监控和高效预测。 展开更多
关键词 生产车间 PETRI网 银行家算法 死锁 监控 死锁恢复
下载PDF
Relaxation-strategy-based Modification Branch-and-Bound Algorithm for Solving a Class of Transportation-production Problems
20
作者 DU Ting-song FEI Pu-sheng JIAN Ji-gui 《Chinese Quarterly Journal of Mathematics》 CSCD 2010年第1期52-59,共8页
In this paper,a new algorithm relaxation-strategy-based modification branchand-bound algorithm is developed for a type of solving the minimum cost transportationproduction problem with concave production costs.The maj... In this paper,a new algorithm relaxation-strategy-based modification branchand-bound algorithm is developed for a type of solving the minimum cost transportationproduction problem with concave production costs.The major improvement of the proposed new method is that modification algorithm reinforces the bounding operation using a Lagrangian relaxation,which is a concave minimization but obtains a tighter bound than the usual linear programming relaxation.Some computational results are included.Computation results indicate that the algorithm can solve fairly large scale problems. 展开更多
关键词 branch-and-bound algorithm transportation-production problem Lagrangian relaxation
下载PDF
上一页 1 2 144 下一页 到第
使用帮助 返回顶部