Based on the theory of variable exponents and BMO norms, we prove the vector-valued inequalities for commutators of singular integrals on both homogeneous and inhomogeneous Herz spaces where the two main indices are v...Based on the theory of variable exponents and BMO norms, we prove the vector-valued inequalities for commutators of singular integrals on both homogeneous and inhomogeneous Herz spaces where the two main indices are variable exponents.Furthermore, we show that a wide class of commutators generated by BMO functions and sublinear operators satisfy vector-valued inequalities.展开更多
In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of...In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of solving by iterative method.展开更多
In this paper, we derive a simple and efficient matrix formulation using Laguerre polynomials to solve the singular integral equation with degenerate kernel. This method is based on replacement of the unknown function...In this paper, we derive a simple and efficient matrix formulation using Laguerre polynomials to solve the singular integral equation with degenerate kernel. This method is based on replacement of the unknown function by truncated series of well known Laguerre expansion of functions. This leads to a system of algebraic equations with Laguerre coefficients. Thus, by solving the matrix equation, the coefficients are obtained. Some numerical examples are included to demonstrate the validity and applicability of the proposed method.展开更多
In this paper, the authors get the Coifman type weighted estimates and weak weighted LlogL estimates for vector-valued generalized commutators of multilinear fractional integral with w ∈ A∞. Furthermore, both the bo...In this paper, the authors get the Coifman type weighted estimates and weak weighted LlogL estimates for vector-valued generalized commutators of multilinear fractional integral with w ∈ A∞. Furthermore, both the boundedness of vector-valued multilinear frac- tional integral and the weak weighted LlogL estimates for vector-valued multilinear fractional integral are also obtained.展开更多
Boundedness of multilinear singular integrals and their commutators from products of variable exponent Lebesgue spaces to variable exponent Lebesgue spaces are obtained. The vector-valued case is also considered.
Let T be a singular integral operator bounded on Lp(Rn) for some p, 1 < p < ∞. The authors give a sufficient condition on the kernel of T so that when b ∈BMO, the commutator [b,T](f) = T(bf) - bT(f) is bounded...Let T be a singular integral operator bounded on Lp(Rn) for some p, 1 < p < ∞. The authors give a sufficient condition on the kernel of T so that when b ∈BMO, the commutator [b,T](f) = T(bf) - bT(f) is bounded on the space Lp for all p, 1 < p < ∞. The condition of this paper is weaker than the usual pointwise Hormander condition.展开更多
It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to ...It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to obtain this, the author first establish the weighted boundedness for the commutators of some singular integral operators on Lp, (w).展开更多
In this paper, the difficulties on calculation in solving singular integral equations are overcome when the restriction of curve of integration to be a closed contour is cancelled. When the curve is an open arc and th...In this paper, the difficulties on calculation in solving singular integral equations are overcome when the restriction of curve of integration to be a closed contour is cancelled. When the curve is an open arc and the solutions for singular integral equations possess singularities of higher order, the solution and the solvable condition for characteristic equations as well as the generalized Noether theorem for complete equations are given.展开更多
On the basis of the Cauchy integral formulas for regular and biregular functions, we define some Cauchy-type singular integral operators. Then we discuss the Holder continuous property of some singular integral operat...On the basis of the Cauchy integral formulas for regular and biregular functions, we define some Cauchy-type singular integral operators. Then we discuss the Holder continuous property of some singular integral operators with one integral variable. Then we divide a singular integral operator with two variables into three parts and prove its Holder continuous property on the boundary.展开更多
A theory of a class of higher order singular integral under the operator (L f) (u) =[u1 σf/σu1(u) - u1σf/σu1(u) + f(u)] is given. We transform the higher order singular integral to a usual Cauchy integr...A theory of a class of higher order singular integral under the operator (L f) (u) =[u1 σf/σu1(u) - u1σf/σu1(u) + f(u)] is given. We transform the higher order singular integral to a usual Cauchy integral, extend the permutation formula of the higher order singular integral deduced by Qian and Zhong in [4] to a general case, and discuss the regularization problem of the higher order singular integral equations with Cauchy kernel and variable coefficients on complex hypersphere.展开更多
Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also gi...Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also given.展开更多
In this paper, the authors study two classes of multilinear singular integrals and obtain their boundedness from Lebesgue spaces to Lipschitz spaces and from Herz type spaces to central Campanato spaces. Moreover, the...In this paper, the authors study two classes of multilinear singular integrals and obtain their boundedness from Lebesgue spaces to Lipschitz spaces and from Herz type spaces to central Campanato spaces. Moreover, the authors also consider the extreme cases.展开更多
In the paper, we establish the LP(Rn+1)-boundedness for a class of singular integral operators associated to surfaces of revolution {(y,γ(|y|), y ∈ Rn} with rough kernels. We also give several applications o...In the paper, we establish the LP(Rn+1)-boundedness for a class of singular integral operators associated to surfaces of revolution {(y,γ(|y|), y ∈ Rn} with rough kernels. We also give several applications of this inequality.展开更多
This paper is devoted to studying the commutators of the multilinear singular integral operators with the non-smooth kernels and the weighted Lipschitz functions. Some mapping properties for two types of commutators o...This paper is devoted to studying the commutators of the multilinear singular integral operators with the non-smooth kernels and the weighted Lipschitz functions. Some mapping properties for two types of commutators on the weighted Lebesgue spaces, which extend and generalize some previous results, are obtained.展开更多
It is well known that, the singular integral operatorS defined as: ifL is a closed smooth contour in the complex plane C, thenS is a bounded linear operator fromH μ(L) intoH μ(L): ifL is an open smooth curve, thenS...It is well known that, the singular integral operatorS defined as: ifL is a closed smooth contour in the complex plane C, thenS is a bounded linear operator fromH μ(L) intoH μ(L): ifL is an open smooth curve, thenS is just a linear operator fromH * intoH *. In this paper, we define a Banach space , and prove that is a bounded linear operator, then verify the boundedness of other kinds of singular integral operators.展开更多
Given a positive Radon measure μ on R^d satisfying the linear growth condition μ(B(x,r))≤C0r^n,x∈R^d,r〉0,(1) where n is a fixed number and O〈n≤d. When d-1〈n,it is proved that if Tt,N1=0,then the correspo...Given a positive Radon measure μ on R^d satisfying the linear growth condition μ(B(x,r))≤C0r^n,x∈R^d,r〉0,(1) where n is a fixed number and O〈n≤d. When d-1〈n,it is proved that if Tt,N1=0,then the corresponding maximal Calderon-Zygmund singular integral is bounded from RBMO to itself only except that it is infinite μ-a. e. on R^d.展开更多
The authors study the singular integral operatorT_~Ω,α f(x)=p.v.∫_~Rn b(|y|)Ω(y′)|y|^-n-α f(x-y)dy,defined on all test functions f,where b is a bounded function,α>0,Ω(y′) is an integrable function on t...The authors study the singular integral operatorT_~Ω,α f(x)=p.v.∫_~Rn b(|y|)Ω(y′)|y|^-n-α f(x-y)dy,defined on all test functions f,where b is a bounded function,α>0,Ω(y′) is an integrable function on the unit sphere S^n-1 satisfying certain cancellation conditions.It is proved that,for n/(n+α)<p<∞,T_~Ω,α is a bounded operator from the Hardy-Sobolev space Hp_α to the Hardy space Hp.The results and its applications improve some theorems in a previous paper of the author and they are extensions of the main theorems in Wheeden's paper(1969).The proof is based on a new atomic decomposition of the space Hp_α by Han,Paluszynski and Weiss(1995).By using the same proof,the singluar integral operators with variable kernels are also studied.展开更多
文摘Based on the theory of variable exponents and BMO norms, we prove the vector-valued inequalities for commutators of singular integrals on both homogeneous and inhomogeneous Herz spaces where the two main indices are variable exponents.Furthermore, we show that a wide class of commutators generated by BMO functions and sublinear operators satisfy vector-valued inequalities.
文摘In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of solving by iterative method.
文摘In this paper, we derive a simple and efficient matrix formulation using Laguerre polynomials to solve the singular integral equation with degenerate kernel. This method is based on replacement of the unknown function by truncated series of well known Laguerre expansion of functions. This leads to a system of algebraic equations with Laguerre coefficients. Thus, by solving the matrix equation, the coefficients are obtained. Some numerical examples are included to demonstrate the validity and applicability of the proposed method.
基金Supported by the National Natural Science Foundation of China(11271330,11226104,11226108)the Jiangxi Natural Science Foundation of China(20114BAB211007)the Science Foundation of Jiangxi Education Department(GJJ13703)
文摘In this paper, the authors get the Coifman type weighted estimates and weak weighted LlogL estimates for vector-valued generalized commutators of multilinear fractional integral with w ∈ A∞. Furthermore, both the boundedness of vector-valued multilinear frac- tional integral and the weak weighted LlogL estimates for vector-valued multilinear fractional integral are also obtained.
基金supported by the Scientific Research Fund of Hunan Provincial Education Department (09A058)
文摘Boundedness of multilinear singular integrals and their commutators from products of variable exponent Lebesgue spaces to variable exponent Lebesgue spaces are obtained. The vector-valued case is also considered.
文摘Let T be a singular integral operator bounded on Lp(Rn) for some p, 1 < p < ∞. The authors give a sufficient condition on the kernel of T so that when b ∈BMO, the commutator [b,T](f) = T(bf) - bT(f) is bounded on the space Lp for all p, 1 < p < ∞. The condition of this paper is weaker than the usual pointwise Hormander condition.
文摘It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to obtain this, the author first establish the weighted boundedness for the commutators of some singular integral operators on Lp, (w).
基金Foundation item is supported by the NNSF of China(19971064)
文摘In this paper, the difficulties on calculation in solving singular integral equations are overcome when the restriction of curve of integration to be a closed contour is cancelled. When the curve is an open arc and the solutions for singular integral equations possess singularities of higher order, the solution and the solvable condition for characteristic equations as well as the generalized Noether theorem for complete equations are given.
基金Supported by the National Natural Science Foundation of China (10771049, 10801043)the Hebei Natural Science Foundation (A2007000225, A2010000346)
文摘On the basis of the Cauchy integral formulas for regular and biregular functions, we define some Cauchy-type singular integral operators. Then we discuss the Holder continuous property of some singular integral operators with one integral variable. Then we divide a singular integral operator with two variables into three parts and prove its Holder continuous property on the boundary.
基金supported by the Natural Science Foundation of Fujian Province of China(S0850029,2008J0206)Innovation Foundation of Xiamen University(XDKJCX20063019),the National Science Foundation of China (10771174)
文摘A theory of a class of higher order singular integral under the operator (L f) (u) =[u1 σf/σu1(u) - u1σf/σu1(u) + f(u)] is given. We transform the higher order singular integral to a usual Cauchy integral, extend the permutation formula of the higher order singular integral deduced by Qian and Zhong in [4] to a general case, and discuss the regularization problem of the higher order singular integral equations with Cauchy kernel and variable coefficients on complex hypersphere.
基金Supported by NNSF and RFDP of Higher Education of China.
文摘Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also given.
基金This project is supported by the National 973Project(G199907510)the SEDF of China(20010027002)
文摘In this paper, the authors study two classes of multilinear singular integrals and obtain their boundedness from Lebesgue spaces to Lipschitz spaces and from Herz type spaces to central Campanato spaces. Moreover, the authors also consider the extreme cases.
基金Supported by the National Natural Science Foundation of China(10931001, 10871173)
文摘In the paper, we establish the LP(Rn+1)-boundedness for a class of singular integral operators associated to surfaces of revolution {(y,γ(|y|), y ∈ Rn} with rough kernels. We also give several applications of this inequality.
基金Supported by the National Natural Science Foundation of China (10771054,11071200)the NFS of Fujian Province of China (No. 2010J01013)
文摘This paper is devoted to studying the commutators of the multilinear singular integral operators with the non-smooth kernels and the weighted Lipschitz functions. Some mapping properties for two types of commutators on the weighted Lebesgue spaces, which extend and generalize some previous results, are obtained.
文摘It is well known that, the singular integral operatorS defined as: ifL is a closed smooth contour in the complex plane C, thenS is a bounded linear operator fromH μ(L) intoH μ(L): ifL is an open smooth curve, thenS is just a linear operator fromH * intoH *. In this paper, we define a Banach space , and prove that is a bounded linear operator, then verify the boundedness of other kinds of singular integral operators.
文摘Given a positive Radon measure μ on R^d satisfying the linear growth condition μ(B(x,r))≤C0r^n,x∈R^d,r〉0,(1) where n is a fixed number and O〈n≤d. When d-1〈n,it is proved that if Tt,N1=0,then the corresponding maximal Calderon-Zygmund singular integral is bounded from RBMO to itself only except that it is infinite μ-a. e. on R^d.
文摘The authors study the singular integral operatorT_~Ω,α f(x)=p.v.∫_~Rn b(|y|)Ω(y′)|y|^-n-α f(x-y)dy,defined on all test functions f,where b is a bounded function,α>0,Ω(y′) is an integrable function on the unit sphere S^n-1 satisfying certain cancellation conditions.It is proved that,for n/(n+α)<p<∞,T_~Ω,α is a bounded operator from the Hardy-Sobolev space Hp_α to the Hardy space Hp.The results and its applications improve some theorems in a previous paper of the author and they are extensions of the main theorems in Wheeden's paper(1969).The proof is based on a new atomic decomposition of the space Hp_α by Han,Paluszynski and Weiss(1995).By using the same proof,the singluar integral operators with variable kernels are also studied.