文摘为了降低采样点水平和高程误差对数字高程模型(digital elevation model,DEM)建模精度的影响,受总体最小二乘算法启发,以较高精度的多面函数(multiquadric function,MQ)为基函数,发展了整体最小二乘MQ算法(MQ-T),并分别借助数值实验和实例分析验证模型计算精度。数值实验中,以高斯合成曲面为研究对象,设计了受不同误差分量影响的采样数据,借助MQ-T曲面建模,并将计算结果与传统MQ进行比较。结果表明,当采样点仅受高程误差分量影响时,MQ-T计算结果精度与MQ相当;当采样数据受水平误差分量影响时,MQ-T计算结果中误差小于MQ中误差。实例分析中,以全站仪获取的采样数据为研究对象,借助MQ-T构建测区DEM,并将计算结果与传统插值算法进行比较,如反距离加权(inverse distance weighted,IDW)法、克里金(Kriging)法和澳大利亚国立大学DEM专用插值软件((Australian National University DEM,ANUDEM)法。精度分析表明,随着采样点密度降低,各种插值算法精度逐步降低;不管采样密度多少,MQ-T计算精度始终高于传统插值算法;对山体阴影图分析表明,MQ-T相比Kriging法有一定峰值削平现象。