Phenol is considered as pollutant due to its toxicity and carcinogenic effect.Thus,variety of innovative methods for separation and recovery of phenolic compounds is developed in order to remove the unwanted phenol fr...Phenol is considered as pollutant due to its toxicity and carcinogenic effect.Thus,variety of innovative methods for separation and recovery of phenolic compounds is developed in order to remove the unwanted phenol from wastewater and obtain valuable phenolic compound.One of potential method is extraction using green based liquid organic solvent.Therefore,the feasibility of using palm oil was investigated.In this research,palm oil based organic phase was used as diluents to treat a simulated wastewater containing 300×10^(-6) of phenol solution using emulsion liquid membrane process(ELM).The stability of water-in-oil(W/O) emulsion on diluent composition and the parameters affecting the phenol removal efficiency and stability of the emulsion;such as emulsification speed,emulsification time,agitation speed,surfactant concentration,pH of external phase,contact time,stripping agent concentration and treat ratio were carried out.The results of ELM study showed that at ratio7 to 3 of palm oil to kerosene,5 min and 1300 r·min^(-1) of emulsification process the stabile primary emulsion were formed.Also,no carrier is needed to facilitate the phenol extraction.In experimental conditions of500 r·min^(-1) of agitation speed,3%Span 80,pH 8 of external phase,5 min of contact time,0.1 mol·L^(-1) NaOH as stripping agent and 1:10 of treat ratio,the ELM process was very promising for removing the phenol from the wastewater.The extraction performance at about 83%of phenol was removed for simulated wastewater and an enrichment of phenol in recovery phase as phenolate compound was around 11 times.展开更多
In order to prepare the polyol with all bio-based components as raw materials,cottonseed oil was first epoxidized by peroxyformic acid generated in situ from hydrogen peroxide and formic acid,and the cottonseed oil ba...In order to prepare the polyol with all bio-based components as raw materials,cottonseed oil was first epoxidized by peroxyformic acid generated in situ from hydrogen peroxide and formic acid,and the cottonseed oil based polyols with variable hydroxyl value were then prepared by the ring-opening of epoxidized cottonseed oil with sorbitol,which is a multi-functional hydroxyl compound derived from a natural source.The chemical structure of the products was characterized with FTIR analysis, and the residual epoxy oxygen content and hydroxyl value of the polyol versus the ring-opening time were investigated.展开更多
以桐油和3-氨基丙基三乙氧基硅烷(APTES)为原料制备阻燃型桐油基多元醇(PTOA),用PTOA替代常规硬泡聚醚4110制备了一系列聚氨酯硬泡。通过FT-IR和1H-NMR对PTOA进行结构表征,并对聚氨酯硬泡进行热失重分析和其他性能测试,研究了PTOA用量...以桐油和3-氨基丙基三乙氧基硅烷(APTES)为原料制备阻燃型桐油基多元醇(PTOA),用PTOA替代常规硬泡聚醚4110制备了一系列聚氨酯硬泡。通过FT-IR和1H-NMR对PTOA进行结构表征,并对聚氨酯硬泡进行热失重分析和其他性能测试,研究了PTOA用量对聚氨酯硬泡性能的影响。结果表明,环氧化桐油酸甘油单酯(EGTO)通过与APTES发生开环反应得到PTOA;随着PTOA替代聚醚4110的量增加,聚氨酯硬泡的初始分解温度降低,第二、三阶段的最大热失重速率温度降低而对应的速率分别减小和增大;泡沫压缩强度先增大后减小,当PTOA替代量为40%时,泡沫的压缩强度可达最高值350 k Pa;当PTOA用量从0到完全替代聚醚4110时,泡沫的极限氧指数由19. 1%提高至23. 0%。展开更多
基金Supported by the Ministry of Higher Education(MOHE)Universiti Teknologi Malaysia(RU Research GrantGUP:Q.J130000.2546.12H50)
文摘Phenol is considered as pollutant due to its toxicity and carcinogenic effect.Thus,variety of innovative methods for separation and recovery of phenolic compounds is developed in order to remove the unwanted phenol from wastewater and obtain valuable phenolic compound.One of potential method is extraction using green based liquid organic solvent.Therefore,the feasibility of using palm oil was investigated.In this research,palm oil based organic phase was used as diluents to treat a simulated wastewater containing 300×10^(-6) of phenol solution using emulsion liquid membrane process(ELM).The stability of water-in-oil(W/O) emulsion on diluent composition and the parameters affecting the phenol removal efficiency and stability of the emulsion;such as emulsification speed,emulsification time,agitation speed,surfactant concentration,pH of external phase,contact time,stripping agent concentration and treat ratio were carried out.The results of ELM study showed that at ratio7 to 3 of palm oil to kerosene,5 min and 1300 r·min^(-1) of emulsification process the stabile primary emulsion were formed.Also,no carrier is needed to facilitate the phenol extraction.In experimental conditions of500 r·min^(-1) of agitation speed,3%Span 80,pH 8 of external phase,5 min of contact time,0.1 mol·L^(-1) NaOH as stripping agent and 1:10 of treat ratio,the ELM process was very promising for removing the phenol from the wastewater.The extraction performance at about 83%of phenol was removed for simulated wastewater and an enrichment of phenol in recovery phase as phenolate compound was around 11 times.
文摘In order to prepare the polyol with all bio-based components as raw materials,cottonseed oil was first epoxidized by peroxyformic acid generated in situ from hydrogen peroxide and formic acid,and the cottonseed oil based polyols with variable hydroxyl value were then prepared by the ring-opening of epoxidized cottonseed oil with sorbitol,which is a multi-functional hydroxyl compound derived from a natural source.The chemical structure of the products was characterized with FTIR analysis, and the residual epoxy oxygen content and hydroxyl value of the polyol versus the ring-opening time were investigated.
文摘以桐油和3-氨基丙基三乙氧基硅烷(APTES)为原料制备阻燃型桐油基多元醇(PTOA),用PTOA替代常规硬泡聚醚4110制备了一系列聚氨酯硬泡。通过FT-IR和1H-NMR对PTOA进行结构表征,并对聚氨酯硬泡进行热失重分析和其他性能测试,研究了PTOA用量对聚氨酯硬泡性能的影响。结果表明,环氧化桐油酸甘油单酯(EGTO)通过与APTES发生开环反应得到PTOA;随着PTOA替代聚醚4110的量增加,聚氨酯硬泡的初始分解温度降低,第二、三阶段的最大热失重速率温度降低而对应的速率分别减小和增大;泡沫压缩强度先增大后减小,当PTOA替代量为40%时,泡沫的压缩强度可达最高值350 k Pa;当PTOA用量从0到完全替代聚醚4110时,泡沫的极限氧指数由19. 1%提高至23. 0%。