本研究旨在评估不同氮磷肥配施生物炭对镉(Cd)污染农田土壤中Cd有效性的降低效果以及对作物生长的影响,为Cd污染农田的安全利用和氮磷肥料的合理选择提供科学依据。以Cd污染农田土壤为对象,采用青菜盆栽试验,对比研究了3种氮肥[硫酸铵(L...本研究旨在评估不同氮磷肥配施生物炭对镉(Cd)污染农田土壤中Cd有效性的降低效果以及对作物生长的影响,为Cd污染农田的安全利用和氮磷肥料的合理选择提供科学依据。以Cd污染农田土壤为对象,采用青菜盆栽试验,对比研究了3种氮肥[硫酸铵(L)、尿素(N)和硝酸钙(X)]与2种磷肥[过磷酸钙(S)和钙镁磷肥(C)]配施生物炭(B)对土壤Cd有效性、青菜生长和吸收Cd的影响。结果表明:与不施肥的对照处理相比,氮磷肥配施显著提高青菜生物量达28.6%~65.7%,氮磷肥配施生物炭的增产效果比单施氮磷肥处理显著提高11.9%~40.0%。硝酸钙配施过磷酸钙显著提高土壤p H 0.23个单位,其余氮磷肥处理对土壤p H无显著影响,但所有氮磷肥处理土壤有效态Cd含量比对照处理降低了16.5%~38.8%,青菜Cd含量降低了5.87%~25.0%。与单施氮磷肥处理相比,氮磷肥配施生物炭处理土壤pH有不同幅度的增加,最大增幅达0.42个单位,土壤有效态Cd含量则降低了5.31%~56.3%,青菜Cd含量降低了25.5%~84.8%。研究结果证实,在Cd污染农田的安全利用过程中,合理选择和施用氮磷肥是至关重要的,这不仅可以获得最佳的经济效益,还能产生积极的环境效应。同时,配施生物炭能够进一步增强氮肥和磷肥对污染土壤中Cd活性的钝化作用。展开更多
Imbalanced application of nitrogen(N) and phosphorus(P) fertilizers can result in reduced crop yield,low nutrient use efficiency,and high loss of nutrients and soil nitrate nitrogen(NO_3^--N) accumulation decreases wh...Imbalanced application of nitrogen(N) and phosphorus(P) fertilizers can result in reduced crop yield,low nutrient use efficiency,and high loss of nutrients and soil nitrate nitrogen(NO_3^--N) accumulation decreases when N is applied with P and/or manure;however,the effect of applications of N with P and/or manure on root growth and distribution in the soil profile is not fully understood.The aim of this study was to investigate the combined effects of different N and P fertilizer application rates with or without manure on maize(Zea mays L.) yield,N uptake,root growth,apparent N surplus,Olsen-P concentration,and mineral N(N_(min)) accumulation in a fluvo-aquic calcareous soil from a long-term(28-year) experiment.The experiment comprised twelve combinations of chemical N and P fertilizers,either with or without chicken manure,as treatments in four replicates.The yield of maize grain was 82%higher,the N uptake 100%higher,and the N_(min) accumulation 39%lower in the treatments with combined N and P in comparison to N fertilizer only.The maize root length density in the 30-60 cm layer was three times greater in the treatments with N and P fertilizers than with N fertilizer only.Manure addition increased maize yield by 50%and N uptake by 43%,and reduced N_(min)(mostly NO_3^--N) accumulation in the soil by 46%.The long-term application of manure and P fertilizer resulted in significant increases in soil Olsen-P concentration when no N fertilizer was applied.Manure application reduced the apparent N surplus for all treatments.These results suggest that combined N and P fertilizer applications could enhance maize grain yield and nutrient uptake via stimulating root growth,leading to reduced accumulation of potentially leachable NO_3^--N in soil,and manure application was a practical way to improve degraded soils in China and the rest of the world.展开更多
文摘本研究旨在评估不同氮磷肥配施生物炭对镉(Cd)污染农田土壤中Cd有效性的降低效果以及对作物生长的影响,为Cd污染农田的安全利用和氮磷肥料的合理选择提供科学依据。以Cd污染农田土壤为对象,采用青菜盆栽试验,对比研究了3种氮肥[硫酸铵(L)、尿素(N)和硝酸钙(X)]与2种磷肥[过磷酸钙(S)和钙镁磷肥(C)]配施生物炭(B)对土壤Cd有效性、青菜生长和吸收Cd的影响。结果表明:与不施肥的对照处理相比,氮磷肥配施显著提高青菜生物量达28.6%~65.7%,氮磷肥配施生物炭的增产效果比单施氮磷肥处理显著提高11.9%~40.0%。硝酸钙配施过磷酸钙显著提高土壤p H 0.23个单位,其余氮磷肥处理对土壤p H无显著影响,但所有氮磷肥处理土壤有效态Cd含量比对照处理降低了16.5%~38.8%,青菜Cd含量降低了5.87%~25.0%。与单施氮磷肥处理相比,氮磷肥配施生物炭处理土壤pH有不同幅度的增加,最大增幅达0.42个单位,土壤有效态Cd含量则降低了5.31%~56.3%,青菜Cd含量降低了25.5%~84.8%。研究结果证实,在Cd污染农田的安全利用过程中,合理选择和施用氮磷肥是至关重要的,这不仅可以获得最佳的经济效益,还能产生积极的环境效应。同时,配施生物炭能够进一步增强氮肥和磷肥对污染土壤中Cd活性的钝化作用。
基金supported by the Beijing Higher Education Young Elite Teacher Project (No. YETP0313)the Chinese Universities Scientific Fund (No. 2014JD073)+1 种基金the National Natural Science Foundation of China (Nos. 31330070, 30925024, 31121062, 41173083, and 41473068)the Introducing International Advanced Agricultural Science and Technology Program of the Ministry of Agriculture of China (948 Program) (No. 2011-G18)
文摘Imbalanced application of nitrogen(N) and phosphorus(P) fertilizers can result in reduced crop yield,low nutrient use efficiency,and high loss of nutrients and soil nitrate nitrogen(NO_3^--N) accumulation decreases when N is applied with P and/or manure;however,the effect of applications of N with P and/or manure on root growth and distribution in the soil profile is not fully understood.The aim of this study was to investigate the combined effects of different N and P fertilizer application rates with or without manure on maize(Zea mays L.) yield,N uptake,root growth,apparent N surplus,Olsen-P concentration,and mineral N(N_(min)) accumulation in a fluvo-aquic calcareous soil from a long-term(28-year) experiment.The experiment comprised twelve combinations of chemical N and P fertilizers,either with or without chicken manure,as treatments in four replicates.The yield of maize grain was 82%higher,the N uptake 100%higher,and the N_(min) accumulation 39%lower in the treatments with combined N and P in comparison to N fertilizer only.The maize root length density in the 30-60 cm layer was three times greater in the treatments with N and P fertilizers than with N fertilizer only.Manure addition increased maize yield by 50%and N uptake by 43%,and reduced N_(min)(mostly NO_3^--N) accumulation in the soil by 46%.The long-term application of manure and P fertilizer resulted in significant increases in soil Olsen-P concentration when no N fertilizer was applied.Manure application reduced the apparent N surplus for all treatments.These results suggest that combined N and P fertilizer applications could enhance maize grain yield and nutrient uptake via stimulating root growth,leading to reduced accumulation of potentially leachable NO_3^--N in soil,and manure application was a practical way to improve degraded soils in China and the rest of the world.