Ethyl cellulose(EC),an important biomass-based material,has excellent film-forming properties.Nevertheless,the high interchain hydrogen bond interaction leads to a high glass transition temperature of EC,which makes i...Ethyl cellulose(EC),an important biomass-based material,has excellent film-forming properties.Nevertheless,the high interchain hydrogen bond interaction leads to a high glass transition temperature of EC,which makes it too brittle to be used widely.The hydroxyl group on EC can form a supramolecular system in the form of a non-covalent bond with an effective plasticizer.In this study,an important vegetable-oil-based derivative named dimer fatty acid was used to prepare a novel special plasticizer for EC.Dimer-fatty-acid-based thioether polyol(DATP)was synthesized and used to modify ethyl cellulose films.The supramolecular composite films of DATP and ethyl cellulose were designed using the newly-formed van der Waals force.The thermal stability,morphology,hydrophilicity,and mechanical properties of the composite films were all tested.Pure EC is fragile,and the addition of DATP makes the ethyl cellulose films more flexible.The elongation at the break of EC supramolecular films increased and the tensile strength decreased with the increasing DATP content.The elongation at the break of EC/DATP(60/40)and EC/DATP(50/50)was up to 40.3%and 43.4%,respectively.Noticeably,the thermal initial degradation temperature of the film with 10%DATP is higher than that of pure EC,which may be attributed to the formation of a better supramolecular system in this composite film.The application of bio-based material(EC)is environmentally friendly,and the novel DATP can be used as a special and effective plasticizer to prepare flexible EC films,making it more widely used in energy,chemical industry,materials,agriculture,medicine,and other fields.展开更多
The isolated hydrophilic black alder(Alnus glutinosa)bark extractives were characterized in terms of component and functional composition and converted at 150℃-170℃ into liquid green polyols using solvent-free and l...The isolated hydrophilic black alder(Alnus glutinosa)bark extractives were characterized in terms of component and functional composition and converted at 150℃-170℃ into liquid green polyols using solvent-free and lowtoxic base-catalyzed modification with propylene carbonate(PC).FTIR spectroscopy,HP-LC,GC,GPC,and wet chemistry methods were used to characterize the starting constituents,intermediate and final products of the reaction and to monitor the different pathways of PC conversion.The reaction of extractives as well as the model compounds,including catechol,xylose,PEG 400,and benzoic acid,with PC indicated the ability of OH groups of different origins present in the extractives to condense with equivalent amounts of PC.The polyols obtained consist of a copolymer fraction with one oxypropyl unit grafted per OH functionality of extractive components on average and oligo oxypropyl diols with a small number of carbonate linkages in the chain,obtained as a result of remaining PC homopolymerization.The domination of the oxypropylation mechanism vs.transcarbonation for PC ring opening was observed for both copolymerization and homopolymerization processes,making the process of oxypropylation with PC similar to that of conventional oxypropylation.At optimal reaction conditions,including a PC/OH ratio of 3.0 and a 24-h duration at 150°C,uniform polyols with low viscosity of~900 mPa·s^(-1),a biomass content of~27%,and an OHV of~500 mg KOH·g^(-1) were obtained.Increasing the temperature of modification allows shortening the process but drastically increases the polyol viscosity.At fixed temperature values,increasing the PC/OH ratio not only decreases the biomass content but also strongly prolongs the processing.The significantly increased duration of the process using PC as an alternative oxyalkylation agent compared to that of oxyalkylation with propylene oxide is a reasonable trade-off for using a safer and more environmentally friendly technology.展开更多
The activities of nickel supported on MCM-41 catalysts, prepared by co-impregnation with polyols (ethylene glycol, glycerol, xylitol, sorbitol and glucose), were investigated by hydrogenation of naphthalene. Compare...The activities of nickel supported on MCM-41 catalysts, prepared by co-impregnation with polyols (ethylene glycol, glycerol, xylitol, sorbitol and glucose), were investigated by hydrogenation of naphthalene. Compared with the conventional wetness impregnation, addition of moderate polyols into the metal nitrate support surface, resulting in formation of persion of the active phase and significant aqueous solution could enhance interaction with very small NiO particle size (〈5 nm), high discatalytic activity. Particle size of Ni^0 decreased from 36.1 nm to below 5 nm; meanwhile the complete hydrogenation of naphthalene was dependent on the Ni^0 particle size. The hydrogenation activities of the catalysts prepared by co-impregnation with polyols were very high with 100% conversion even at iow temperature of 55 ℃.展开更多
Epalrestat is a noncompetitive and reversible aldose reductase inhibitor used for the treatment of diabetic neuropathy. This study assumed that epalrestat had a protective effect on diabetic peripheral nerve injury by...Epalrestat is a noncompetitive and reversible aldose reductase inhibitor used for the treatment of diabetic neuropathy. This study assumed that epalrestat had a protective effect on diabetic peripheral nerve injury by suppressing the expression of aldose reductase in peripheral nerves of diabetes mellitus rats. The high-fat and high-carbohydrate model rats were established by intraperitoneal injection of streptozotocin. Peripheral neuropathy occurred in these rats after sustaining high blood glucose for 8 weeks. At 12 weeks after streptozotocin injection, rats were intragastrically administered epalrestat 100 mg/kg daily for 6 weeks. Transmission electron microscope revealed that the injuries to myelinated nerve fibers, non-myelinated nerve fibers and Schwann cells of rat sciatic nerves had reduced compared to rats without epalrestat administuation. Western blot assay and immunohistochemical results demonstrated that after intervention with epalrestat, the activities of antioxidant enzymes such as superoxide dismutase, catalase and glutathione peroxidase gradually increased, but aldose reductase protein expression gradually diminished. Results confirmed that epalrestat could protect against diabetic peripheral neuropathy by relieving oxidative stress and suppressing the polyol pathway.展开更多
Three kinds of tung oil-based structural flame retardants polyols(TOFPs) were prepared by new methods in this paper. First, tung oil was used to produce monoglyceride and diglyceride by transesterification with glycer...Three kinds of tung oil-based structural flame retardants polyols(TOFPs) were prepared by new methods in this paper. First, tung oil was used to produce monoglyceride and diglyceride by transesterification with glycerol by sodium methoxide. The products after transesterification were epoxidized by peracetic acid which was in-situ generated from acetic acid and hydrogen peroxide in the presence of sulfuric acid catalyst. And then, TOFPs were prepared from epoxidized alcoholysis tung oil(EGTO) with 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide(DOPO), diethyl phosphate(DEP) and diethanolamine(DEA) by ring-opening reactions, respectively. GPC was used to evaluate the conversion rate, at optimum reaction conditions, selectivity for monoglyceride in transesterification. The influence of different parameters such as temperature, mole ratio or mass ratio on the conversion rate of transesterification and epoxidation were investigated. The molecular structures of TOFPs were characterized by FTIR and ~1HNMR. Finally, tung oil-based polyurethane foams(TOPUFs) were prepared by a one-shot process using TOFPs with polyisocyanate. The LOI values of TOPUFs whose content of DOPO-EGTO,DEP-EGTO and DEA-EGTO were 100 wt% can reach to 26.2%, 25.1%, and 24.4%, respectively.展开更多
A series of self-reducing bifunctional Ni-W/SBA-15 catalysts were synthesized using biomass-based carbon source as the reducing agent without conventional further reduction step. The self-reducing catalysts were perfo...A series of self-reducing bifunctional Ni-W/SBA-15 catalysts were synthesized using biomass-based carbon source as the reducing agent without conventional further reduction step. The self-reducing catalysts were performed on the hydrogenolysis of cellulose to low carbon polyols. The effects of calcination temperature and metallic loading contents for cellulose hydrogenolysis reaction were investigated detailedly.The optimal calcination temperature was found to be 673 K by TG analysis. The active metal nanoparticles with a better dispersion were observed using SEM and element mapping technology. The yield of low carbon polyols using the catalyst with the receipt of 10%Ni-15%W/SBA-15-673 K can reach as high as68.14%, of which the ethylene glycol(EG) accounts for 61.04%.展开更多
Carbon-coated lithium manganese silicate (Li2MnSiO4/C) nanoparticles were synthesized by polyol process. X-ray diffraction (XRD) patterns of the obtained materials exhibit a good fit with that of the Li2MnSiO4 pha...Carbon-coated lithium manganese silicate (Li2MnSiO4/C) nanoparticles were synthesized by polyol process. X-ray diffraction (XRD) patterns of the obtained materials exhibit a good fit with that of the Li2MnSiO4 phase. Field emission scanning electron microscopy (FESEM) images of the obtained samples show that the particle size is only tens of nanometers. The high resolution transmission electron microscopy (HRTEM) analysis shows that the Li2MnSiO4 nanoparticles are surrounded by a very thin film of amorphous carbon. The composite prepared through polyol process shows good performance as cathode materials in lithium cells at room temperature. The charge capacity of the Li2MnSiO4/C samples is 219 mAh/g (about 1.3 Li^+ per unit formula extracted), and the discharge capacity is 132 mAh/g (about 0.8 Li^+ per unit formula inserted) in the first cycle in the voltage range of 1.5-4.8 V. A good capacity cycling maintenance of 81.8% after 10 cycles was obtained.展开更多
In diabetes mellitus, the polyol pathway is highly active and consumes approximately 30% glucose in the body. This pathway contains 2 reactions catalyzed by aldose reductase(AR) and sorbitol dehydrogenase, respectivel...In diabetes mellitus, the polyol pathway is highly active and consumes approximately 30% glucose in the body. This pathway contains 2 reactions catalyzed by aldose reductase(AR) and sorbitol dehydrogenase, respectively. AR reduces glucose to sorbitol at the expense of NADPH, while sorbitol dehydrogenase converts sorbitol to fructose at the expense of NAD+, leading to NADH production. Consumption of NADPH, accumulation of sorbitol, and generation of fructose and NADH have all been implicated in the pathogenesis of diabetes and its complications. In this review, the roles of this pathway in NADH/NAD+redox imbalance stress and oxidative stress in diabetes are highlighted. A potential intervention using nicotinamide riboside to restore redox balance as an approach to fighting diabetes is also discussed.展开更多
A new sesquiterpene polyol ester was isolated from the leaves of Celastrus angulatus. Its structure was determined as 1 (beta), 2 (beta), 9 (a) -triacetoxy-8 (a) -((a) -hydroxyl-isobutyryloxy)-15-benzoyloxy-4 (a) -hyd...A new sesquiterpene polyol ester was isolated from the leaves of Celastrus angulatus. Its structure was determined as 1 (beta), 2 (beta), 9 (a) -triacetoxy-8 (a) -((a) -hydroxyl-isobutyryloxy)-15-benzoyloxy-4 (a) -hydroxy-dihydroagarofuran by means of NMR, MS and IR spectral analysis. Preliminary biological study on antitumor activity revealed that this compound showed strong nonselective cytotoxicity against four of the NCI panel cell lines.展开更多
Eu^3+-doped LaPO4 nanoparticles were prepared by polyol method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), thermogravimetry-differential thermal analysis (...Eu^3+-doped LaPO4 nanoparticles were prepared by polyol method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), thermogravimetry-differential thermal analysis (TG-DTA), Uv-vis diffuse reflectance spectra (DRS), photoluminescence (PL) spectra and lifetime measurement. The results of XRD indicate that the as-prepared nanoparticles are crystallized well at 160 ℃ and assigned to the monoclinic monazite-structure of LaPO4 phase. The obtained LaPO4:Eu^3+ nanoparticles are spherical with narrow size distribution and the average size of 25 nm.展开更多
The controllable synthesis of uniform silver nanocubes with high purity is pivotal for the fundamental study of self-assembly and further research on the hollow nanostructures,gold nanocages for instance.Here,Ag nanoc...The controllable synthesis of uniform silver nanocubes with high purity is pivotal for the fundamental study of self-assembly and further research on the hollow nanostructures,gold nanocages for instance.Here,Ag nanocubes of different sizes were synthesized by an improved polyol method.With addition of HCl solution,Ag nanocubes with size about 100 nm were obtained under an air atmosphere.And Ag nanocubes with size around50 nm can be produced in a short time under Argon atmosphere with the presence of NaHS instead of HCl.Meanwhile,uniform Ag nanocubes with size larger than 100 nm were also synthesized successfully via adjusting experiment parameters.Results of transmission electron microscopy(TEM)combined with selected area electron diffraction(SAED)show that the Ag nanocubes are single crystalline with six(200)surface plane.In the UV-Vis-NIR optical absorption spectrum,the diple moment resonance absorption peak is changed in the range of 420—500nm with the increase of Ag nanocubes size.展开更多
A new form of Cu2O, disk-like structure with 60 nm in thickness and 2 μm in diameter,has been successfully synthesized in bulk quantities by polyol process in the presence of PVP K-30.
In the present study we report on changes in irritable bowel syndrome-severity scoring system (IBS-SSS) and irritable bowel syndrome-quality of life (IBS-QoL) in 19 IBS patients, aged 18 to 74 years (F/M: 14/5), durin...In the present study we report on changes in irritable bowel syndrome-severity scoring system (IBS-SSS) and irritable bowel syndrome-quality of life (IBS-QoL) in 19 IBS patients, aged 18 to 74 years (F/M: 14/5), during 12 wk registering their symptoms on the web-application (www.ibs.constant-care.dk). During a control period of the first 6-wk patients were asked to register their IBS-SSS and IBS-QoL on the web-application weekly without receiving any intervention. Thereafter, low fermentable oligo-, di-, mono-saccharides and polyols (FODMAP) diet (LFD) was introduced for the next 6 wk while continuing the registration. Though a small sample size a significant improvement in disease activity (IBS-SSS) was observed during both the control period, median: 278 (range: 122-377), P = 0.02, and subsequently during the LFD period, median: 151 (range: 29-334), P < 0.01. The IBS-QoL solely changed significantly during the LFD period, median: 67 (37-120), P < 0.01. The significant reduction in disease activity during the control period shows a positive effect of the web-application on IBS symptoms when presented as a “traffic light”. However adding the diet reduced IBS-SSS to < 150, inactive to mild symptoms. In the future results from larger scale trials are awaited.展开更多
Supported PtRu/C catalysts used in direct methanol fuel cells (DMFCs) were prepared by a new modified polyol method. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and cyclic voltammograms (CVs) were ...Supported PtRu/C catalysts used in direct methanol fuel cells (DMFCs) were prepared by a new modified polyol method. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and cyclic voltammograms (CVs) were carried out to characterize the morphology, composition and the electrochemical properties of the PtRu/C catalyst. The results revealed that the PtRu nanoparticles with small average particle size (≈2.5 nm), and highly dispersed on the carbon support. The PtRu/C catalyst exhibited high catalytic activity and anti poisoned performance than that of the JM PtRu/C. It is imply that the modified polyol method is efficient for PtRu/C catalyst preparation.展开更多
基金supported by Jiangsu Province Biomass Energy and Materials Laboratory,China(Grant No.JSBEM-S-202007).
文摘Ethyl cellulose(EC),an important biomass-based material,has excellent film-forming properties.Nevertheless,the high interchain hydrogen bond interaction leads to a high glass transition temperature of EC,which makes it too brittle to be used widely.The hydroxyl group on EC can form a supramolecular system in the form of a non-covalent bond with an effective plasticizer.In this study,an important vegetable-oil-based derivative named dimer fatty acid was used to prepare a novel special plasticizer for EC.Dimer-fatty-acid-based thioether polyol(DATP)was synthesized and used to modify ethyl cellulose films.The supramolecular composite films of DATP and ethyl cellulose were designed using the newly-formed van der Waals force.The thermal stability,morphology,hydrophilicity,and mechanical properties of the composite films were all tested.Pure EC is fragile,and the addition of DATP makes the ethyl cellulose films more flexible.The elongation at the break of EC supramolecular films increased and the tensile strength decreased with the increasing DATP content.The elongation at the break of EC/DATP(60/40)and EC/DATP(50/50)was up to 40.3%and 43.4%,respectively.Noticeably,the thermal initial degradation temperature of the film with 10%DATP is higher than that of pure EC,which may be attributed to the formation of a better supramolecular system in this composite film.The application of bio-based material(EC)is environmentally friendly,and the novel DATP can be used as a special and effective plasticizer to prepare flexible EC films,making it more widely used in energy,chemical industry,materials,agriculture,medicine,and other fields.
基金financial support from the Latvian Council of Science,Project No.lzp-2021/1-0207.
文摘The isolated hydrophilic black alder(Alnus glutinosa)bark extractives were characterized in terms of component and functional composition and converted at 150℃-170℃ into liquid green polyols using solvent-free and lowtoxic base-catalyzed modification with propylene carbonate(PC).FTIR spectroscopy,HP-LC,GC,GPC,and wet chemistry methods were used to characterize the starting constituents,intermediate and final products of the reaction and to monitor the different pathways of PC conversion.The reaction of extractives as well as the model compounds,including catechol,xylose,PEG 400,and benzoic acid,with PC indicated the ability of OH groups of different origins present in the extractives to condense with equivalent amounts of PC.The polyols obtained consist of a copolymer fraction with one oxypropyl unit grafted per OH functionality of extractive components on average and oligo oxypropyl diols with a small number of carbonate linkages in the chain,obtained as a result of remaining PC homopolymerization.The domination of the oxypropylation mechanism vs.transcarbonation for PC ring opening was observed for both copolymerization and homopolymerization processes,making the process of oxypropylation with PC similar to that of conventional oxypropylation.At optimal reaction conditions,including a PC/OH ratio of 3.0 and a 24-h duration at 150°C,uniform polyols with low viscosity of~900 mPa·s^(-1),a biomass content of~27%,and an OHV of~500 mg KOH·g^(-1) were obtained.Increasing the temperature of modification allows shortening the process but drastically increases the polyol viscosity.At fixed temperature values,increasing the PC/OH ratio not only decreases the biomass content but also strongly prolongs the processing.The significantly increased duration of the process using PC as an alternative oxyalkylation agent compared to that of oxyalkylation with propylene oxide is a reasonable trade-off for using a safer and more environmentally friendly technology.
基金V. ACKNOWLEDGMENTS This work was supported by the National High-Tech Research and Development 863 Program of China (No.2012AA101806), the National Natural Science Foundation of China (No.21306195 and No.51276183), and the National Key Basic Research Program 973 Project from Ministry of Science and Technology of China (No.2012CB215304).
文摘The activities of nickel supported on MCM-41 catalysts, prepared by co-impregnation with polyols (ethylene glycol, glycerol, xylitol, sorbitol and glucose), were investigated by hydrogenation of naphthalene. Compared with the conventional wetness impregnation, addition of moderate polyols into the metal nitrate support surface, resulting in formation of persion of the active phase and significant aqueous solution could enhance interaction with very small NiO particle size (〈5 nm), high discatalytic activity. Particle size of Ni^0 decreased from 36.1 nm to below 5 nm; meanwhile the complete hydrogenation of naphthalene was dependent on the Ni^0 particle size. The hydrogenation activities of the catalysts prepared by co-impregnation with polyols were very high with 100% conversion even at iow temperature of 55 ℃.
基金Supported by the Natural Science Foundation of China(51172064)the Scientific and Technological Development Projects,Science and Technology Department of Henan Province,China(112300410011)
基金supported by a grant from the National Natural Science Foundation of China,No.81060141
文摘Epalrestat is a noncompetitive and reversible aldose reductase inhibitor used for the treatment of diabetic neuropathy. This study assumed that epalrestat had a protective effect on diabetic peripheral nerve injury by suppressing the expression of aldose reductase in peripheral nerves of diabetes mellitus rats. The high-fat and high-carbohydrate model rats were established by intraperitoneal injection of streptozotocin. Peripheral neuropathy occurred in these rats after sustaining high blood glucose for 8 weeks. At 12 weeks after streptozotocin injection, rats were intragastrically administered epalrestat 100 mg/kg daily for 6 weeks. Transmission electron microscope revealed that the injuries to myelinated nerve fibers, non-myelinated nerve fibers and Schwann cells of rat sciatic nerves had reduced compared to rats without epalrestat administuation. Western blot assay and immunohistochemical results demonstrated that after intervention with epalrestat, the activities of antioxidant enzymes such as superoxide dismutase, catalase and glutathione peroxidase gradually increased, but aldose reductase protein expression gradually diminished. Results confirmed that epalrestat could protect against diabetic peripheral neuropathy by relieving oxidative stress and suppressing the polyol pathway.
基金Supported by the National Natural Science Foundation of China(31670577,31670578,31570563)
文摘Three kinds of tung oil-based structural flame retardants polyols(TOFPs) were prepared by new methods in this paper. First, tung oil was used to produce monoglyceride and diglyceride by transesterification with glycerol by sodium methoxide. The products after transesterification were epoxidized by peracetic acid which was in-situ generated from acetic acid and hydrogen peroxide in the presence of sulfuric acid catalyst. And then, TOFPs were prepared from epoxidized alcoholysis tung oil(EGTO) with 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide(DOPO), diethyl phosphate(DEP) and diethanolamine(DEA) by ring-opening reactions, respectively. GPC was used to evaluate the conversion rate, at optimum reaction conditions, selectivity for monoglyceride in transesterification. The influence of different parameters such as temperature, mole ratio or mass ratio on the conversion rate of transesterification and epoxidation were investigated. The molecular structures of TOFPs were characterized by FTIR and ~1HNMR. Finally, tung oil-based polyurethane foams(TOPUFs) were prepared by a one-shot process using TOFPs with polyisocyanate. The LOI values of TOPUFs whose content of DOPO-EGTO,DEP-EGTO and DEA-EGTO were 100 wt% can reach to 26.2%, 25.1%, and 24.4%, respectively.
基金supported by scientific research project of Zhejiang Provincial Education Department(Grant No.Y20112088,China)Science and technology project of Zhejiang Province(Grant No.2011R09028-10,China)
文摘A series of self-reducing bifunctional Ni-W/SBA-15 catalysts were synthesized using biomass-based carbon source as the reducing agent without conventional further reduction step. The self-reducing catalysts were performed on the hydrogenolysis of cellulose to low carbon polyols. The effects of calcination temperature and metallic loading contents for cellulose hydrogenolysis reaction were investigated detailedly.The optimal calcination temperature was found to be 673 K by TG analysis. The active metal nanoparticles with a better dispersion were observed using SEM and element mapping technology. The yield of low carbon polyols using the catalyst with the receipt of 10%Ni-15%W/SBA-15-673 K can reach as high as68.14%, of which the ethylene glycol(EG) accounts for 61.04%.
文摘Carbon-coated lithium manganese silicate (Li2MnSiO4/C) nanoparticles were synthesized by polyol process. X-ray diffraction (XRD) patterns of the obtained materials exhibit a good fit with that of the Li2MnSiO4 phase. Field emission scanning electron microscopy (FESEM) images of the obtained samples show that the particle size is only tens of nanometers. The high resolution transmission electron microscopy (HRTEM) analysis shows that the Li2MnSiO4 nanoparticles are surrounded by a very thin film of amorphous carbon. The composite prepared through polyol process shows good performance as cathode materials in lithium cells at room temperature. The charge capacity of the Li2MnSiO4/C samples is 219 mAh/g (about 1.3 Li^+ per unit formula extracted), and the discharge capacity is 132 mAh/g (about 0.8 Li^+ per unit formula inserted) in the first cycle in the voltage range of 1.5-4.8 V. A good capacity cycling maintenance of 81.8% after 10 cycles was obtained.
基金National Institutes of Health,Grant/Award Number:R01NS079792UNTHSC Seed Grants,Grant/Award Number:RI10015 and RI10039
文摘In diabetes mellitus, the polyol pathway is highly active and consumes approximately 30% glucose in the body. This pathway contains 2 reactions catalyzed by aldose reductase(AR) and sorbitol dehydrogenase, respectively. AR reduces glucose to sorbitol at the expense of NADPH, while sorbitol dehydrogenase converts sorbitol to fructose at the expense of NAD+, leading to NADH production. Consumption of NADPH, accumulation of sorbitol, and generation of fructose and NADH have all been implicated in the pathogenesis of diabetes and its complications. In this review, the roles of this pathway in NADH/NAD+redox imbalance stress and oxidative stress in diabetes are highlighted. A potential intervention using nicotinamide riboside to restore redox balance as an approach to fighting diabetes is also discussed.
文摘A new sesquiterpene polyol ester was isolated from the leaves of Celastrus angulatus. Its structure was determined as 1 (beta), 2 (beta), 9 (a) -triacetoxy-8 (a) -((a) -hydroxyl-isobutyryloxy)-15-benzoyloxy-4 (a) -hydroxy-dihydroagarofuran by means of NMR, MS and IR spectral analysis. Preliminary biological study on antitumor activity revealed that this compound showed strong nonselective cytotoxicity against four of the NCI panel cell lines.
文摘Eu^3+-doped LaPO4 nanoparticles were prepared by polyol method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), thermogravimetry-differential thermal analysis (TG-DTA), Uv-vis diffuse reflectance spectra (DRS), photoluminescence (PL) spectra and lifetime measurement. The results of XRD indicate that the as-prepared nanoparticles are crystallized well at 160 ℃ and assigned to the monoclinic monazite-structure of LaPO4 phase. The obtained LaPO4:Eu^3+ nanoparticles are spherical with narrow size distribution and the average size of 25 nm.
基金supported by the National Natural Science the Foundations of China(Nos.11774171,11374159)the Fundamental Research Funds for the Central Universities(Nos.NJ20160105,NZ2015101)sponsored by Qing Lan Project of Jiangsu Province
文摘The controllable synthesis of uniform silver nanocubes with high purity is pivotal for the fundamental study of self-assembly and further research on the hollow nanostructures,gold nanocages for instance.Here,Ag nanocubes of different sizes were synthesized by an improved polyol method.With addition of HCl solution,Ag nanocubes with size about 100 nm were obtained under an air atmosphere.And Ag nanocubes with size around50 nm can be produced in a short time under Argon atmosphere with the presence of NaHS instead of HCl.Meanwhile,uniform Ag nanocubes with size larger than 100 nm were also synthesized successfully via adjusting experiment parameters.Results of transmission electron microscopy(TEM)combined with selected area electron diffraction(SAED)show that the Ag nanocubes are single crystalline with six(200)surface plane.In the UV-Vis-NIR optical absorption spectrum,the diple moment resonance absorption peak is changed in the range of 420—500nm with the increase of Ag nanocubes size.
基金This work was supported by the National Natural Science Foundation of ChinaNatural Science Foundation of Qinghai Province.
文摘A new form of Cu2O, disk-like structure with 60 nm in thickness and 2 μm in diameter,has been successfully synthesized in bulk quantities by polyol process in the presence of PVP K-30.
文摘In the present study we report on changes in irritable bowel syndrome-severity scoring system (IBS-SSS) and irritable bowel syndrome-quality of life (IBS-QoL) in 19 IBS patients, aged 18 to 74 years (F/M: 14/5), during 12 wk registering their symptoms on the web-application (www.ibs.constant-care.dk). During a control period of the first 6-wk patients were asked to register their IBS-SSS and IBS-QoL on the web-application weekly without receiving any intervention. Thereafter, low fermentable oligo-, di-, mono-saccharides and polyols (FODMAP) diet (LFD) was introduced for the next 6 wk while continuing the registration. Though a small sample size a significant improvement in disease activity (IBS-SSS) was observed during both the control period, median: 278 (range: 122-377), P = 0.02, and subsequently during the LFD period, median: 151 (range: 29-334), P < 0.01. The IBS-QoL solely changed significantly during the LFD period, median: 67 (37-120), P < 0.01. The significant reduction in disease activity during the control period shows a positive effect of the web-application on IBS symptoms when presented as a “traffic light”. However adding the diet reduced IBS-SSS to < 150, inactive to mild symptoms. In the future results from larger scale trials are awaited.
文摘Supported PtRu/C catalysts used in direct methanol fuel cells (DMFCs) were prepared by a new modified polyol method. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and cyclic voltammograms (CVs) were carried out to characterize the morphology, composition and the electrochemical properties of the PtRu/C catalyst. The results revealed that the PtRu nanoparticles with small average particle size (≈2.5 nm), and highly dispersed on the carbon support. The PtRu/C catalyst exhibited high catalytic activity and anti poisoned performance than that of the JM PtRu/C. It is imply that the modified polyol method is efficient for PtRu/C catalyst preparation.