期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Automatic Extraction of Typical River Vegetation Elements Based on Low-altitude Remote Sensing Images
1
作者 Xiaomeng ZHANG Hao WU 《Meteorological and Environmental Research》 CAS 2023年第1期70-75,共6页
Based on low-altitude remote sensing images,this paper established sample set of typical river vegetation elements and proposed river vegetation extraction technical solution to adaptively extract typical vegetation e... Based on low-altitude remote sensing images,this paper established sample set of typical river vegetation elements and proposed river vegetation extraction technical solution to adaptively extract typical vegetation elements of river basins.The main research of this paper were as follows:(1)a typical vegetation extraction sample set based on low-altitude remote sensing images was established.(2)A low-altitude remote sensing image vegetation extraction model based on the focus perception module was designed to realize the end-to-end automatic extraction of different types of vegetation areas of low-altitude remote sensing images to fully learn the spectral spatial texture information and deep semantic information of the images.(3)By comparison with the baseline method,baseline method with embedded focus perception module showed an improvement in the precision by 7.37%and mIoU by 49.49%.Through visual interpretation and quantitative calculation analysis,the typical river vegetation adaptive extraction network has effectiveness and generalization ability,consistent with the needs of practical applications of vegetation extraction. 展开更多
关键词 altitude remote sensing images Deep learning Semantic segmentation Typical river vegetation extraction Attention
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部