Community structure characteristics and vegetation damage degree were investigated and analyzed in a forest around village, which had been long term exposed to ambient atmospheric pollution stress, to study the influe...Community structure characteristics and vegetation damage degree were investigated and analyzed in a forest around village, which had been long term exposed to ambient atmospheric pollution stress, to study the influence of airborne pollutant emissions from the concentrated ceramic industries on vegetation. Field survey was carried out in a semi natural secondary forest on hilly land, Nanhai District of Guangdong Province, for the tree layer in ten quadrates with the total area of 10 × (10 m×10 m), and for shrub and herb layers in eight subquadrates with the total area of 4 × (5 m×5 m). Results showed that exotic Eucalyptus exserta and Eucalyptus urophylla were dominated over the community, followed by native tree species, Scheffiera octophylla and Bambusa gibba, with the importance value (Iv) of 26.75, 17.08, 16.27 and 11.50, respectively. Among all tree species, Eucalyptus exserta and Pinus massoniana were most severely damaged with nearly 100% damaged rate. Bambusa gibba and Dalbergia balansae were injured with damaged rate of 85.1% 68.3%, however, Eucalyptus urophylla, Celtis sinensis, Helicia cochinchinensis, Cinnamomum burmanni and Vitex negundo revealed moderate injuries (45%-57.5%). Most of other indigenous species including Schefflera octophylla, Viburnum odoratissimum, Desmos chinensis, etc. showed less injured symptoms under the pollution stress. Compared with species in tree layer, damages of undergrowths were largely less. These results suggested that attention and concern should be paid on those introduced Eucalyptus species which had ever been widely used for forest restora tion in degraded hilly lands of south China since 1970-1980s, due to their last growing aspect, The results also demonstrated the potentials and perspectives by developing native species as target plants for restoration of degraded area at similar polluted location, which may provide scientific base for scientists to study and understand the functional aspects of native species and process-based interactions with pollution stress.展开更多
Accurate crop-specific damage assessment immediately after flood events is crucial for grain pricing,food policy,and agricultural trade.The main goal of this research is to estimate the crop-specific damage that occur...Accurate crop-specific damage assessment immediately after flood events is crucial for grain pricing,food policy,and agricultural trade.The main goal of this research is to estimate the crop-specific damage that occurs immediately after flood events by using a newly developed Disaster Vegetation Damage Index(DVDI).By incorporating the DVDI along with information on crop types and flood inundation extents,this research assessed crop damage for three case-study events:Iowa Severe Storms and Flooding(DR 4386),Nebraska Severe Storms and Flooding(DR 4387),and Texas Severe Storms and Flooding(DR 4272).Crop damage is assessed on a qualitative scale and reported at the county level for the selected flood cases in Iowa,Nebraska,and Texas.More than half of flooded corn has experienced no damage,whereas 60%of affected soybean has a higher degree of loss in most of the selected counties in Iowa.Similarly,a total of 350 ha of soybean has moderate to severe damage whereas corn has a negligible impact in Cuming,which is the most affected county in Nebraska.A total of 454 ha of corn are severely damaged in Anderson County,Texas.More than 200 ha of alfalfa have moderate to severe damage in Navarro County,Texas.The results of damage assessment are validated through the NDVI profile and yield loss in percentage.A linear relation is found between DVDI values and crop yield loss.An R2 value of 0.54 indicates the potentiality of DVDI for rapid crop damage estimation.The results also indicate the association between DVDI class and crop yield loss.展开更多
Vegetation plays an important role in soil and water conservation, water conservation and carbon sequestration of an ecosystem. The restoration of damaged vegetation is of great significance to the maintenance of spec...Vegetation plays an important role in soil and water conservation, water conservation and carbon sequestration of an ecosystem. The restoration of damaged vegetation is of great significance to the maintenance of species diversity and the restoration of the regional ecological environment. It is also one of the most effective measures to improve the fragile ecosystem. This paper summarizes the research results from decades of damaged vegetation recovery in the process of vegetation recovery, the main driving factor and the restoration mode.展开更多
Hyphandria cunea is an insect that can damage hundreds of plants in its larval phase and needs to be placed under quarantine at an international level. Its hosts involve 600 plant species, including forest and fruit t...Hyphandria cunea is an insect that can damage hundreds of plants in its larval phase and needs to be placed under quarantine at an international level. Its hosts involve 600 plant species, including forest and fruit trees, shrubs, crops, vegetables, weeds and others. In 2006, we surveyed two Fraxinus chinensis Roxb stands, damaged to different degrees, after the invasion of H. cunea in the Changping district of the Beijing area. Given our survey of individual trees and investigation of bio-environmental factors, we pro-vide a preliminarily simulation of the growth situation of F. chinensis stands, damaged by H. cunea, by using the Forest Vegetation Simulator software (FVS), which is supported by the "948" project from the State Forestry Administration of China. The results will provide a valuable reference in forecasting the effect of H. cunea and other invasive pests in China on forest ecological values.展开更多
基金This work was supported by Natural Science Foundation of China (30370283), Natural Science Foundation of Guangdong Province (04002306), and the Special Fund for the Development of Science and Tech nology of Foshan (03020091 ).
文摘Community structure characteristics and vegetation damage degree were investigated and analyzed in a forest around village, which had been long term exposed to ambient atmospheric pollution stress, to study the influence of airborne pollutant emissions from the concentrated ceramic industries on vegetation. Field survey was carried out in a semi natural secondary forest on hilly land, Nanhai District of Guangdong Province, for the tree layer in ten quadrates with the total area of 10 × (10 m×10 m), and for shrub and herb layers in eight subquadrates with the total area of 4 × (5 m×5 m). Results showed that exotic Eucalyptus exserta and Eucalyptus urophylla were dominated over the community, followed by native tree species, Scheffiera octophylla and Bambusa gibba, with the importance value (Iv) of 26.75, 17.08, 16.27 and 11.50, respectively. Among all tree species, Eucalyptus exserta and Pinus massoniana were most severely damaged with nearly 100% damaged rate. Bambusa gibba and Dalbergia balansae were injured with damaged rate of 85.1% 68.3%, however, Eucalyptus urophylla, Celtis sinensis, Helicia cochinchinensis, Cinnamomum burmanni and Vitex negundo revealed moderate injuries (45%-57.5%). Most of other indigenous species including Schefflera octophylla, Viburnum odoratissimum, Desmos chinensis, etc. showed less injured symptoms under the pollution stress. Compared with species in tree layer, damages of undergrowths were largely less. These results suggested that attention and concern should be paid on those introduced Eucalyptus species which had ever been widely used for forest restora tion in degraded hilly lands of south China since 1970-1980s, due to their last growing aspect, The results also demonstrated the potentials and perspectives by developing native species as target plants for restoration of degraded area at similar polluted location, which may provide scientific base for scientists to study and understand the functional aspects of native species and process-based interactions with pollution stress.
基金funded by grants from NASA Applied Science Program(Grant#NNX14AP91G,PI:Prof.Liping Di)NSF INFEWS program(Grant#CNS-1739705,PI:Prof.Liping Di)
文摘Accurate crop-specific damage assessment immediately after flood events is crucial for grain pricing,food policy,and agricultural trade.The main goal of this research is to estimate the crop-specific damage that occurs immediately after flood events by using a newly developed Disaster Vegetation Damage Index(DVDI).By incorporating the DVDI along with information on crop types and flood inundation extents,this research assessed crop damage for three case-study events:Iowa Severe Storms and Flooding(DR 4386),Nebraska Severe Storms and Flooding(DR 4387),and Texas Severe Storms and Flooding(DR 4272).Crop damage is assessed on a qualitative scale and reported at the county level for the selected flood cases in Iowa,Nebraska,and Texas.More than half of flooded corn has experienced no damage,whereas 60%of affected soybean has a higher degree of loss in most of the selected counties in Iowa.Similarly,a total of 350 ha of soybean has moderate to severe damage whereas corn has a negligible impact in Cuming,which is the most affected county in Nebraska.A total of 454 ha of corn are severely damaged in Anderson County,Texas.More than 200 ha of alfalfa have moderate to severe damage in Navarro County,Texas.The results of damage assessment are validated through the NDVI profile and yield loss in percentage.A linear relation is found between DVDI values and crop yield loss.An R2 value of 0.54 indicates the potentiality of DVDI for rapid crop damage estimation.The results also indicate the association between DVDI class and crop yield loss.
文摘Vegetation plays an important role in soil and water conservation, water conservation and carbon sequestration of an ecosystem. The restoration of damaged vegetation is of great significance to the maintenance of species diversity and the restoration of the regional ecological environment. It is also one of the most effective measures to improve the fragile ecosystem. This paper summarizes the research results from decades of damaged vegetation recovery in the process of vegetation recovery, the main driving factor and the restoration mode.
文摘Hyphandria cunea is an insect that can damage hundreds of plants in its larval phase and needs to be placed under quarantine at an international level. Its hosts involve 600 plant species, including forest and fruit trees, shrubs, crops, vegetables, weeds and others. In 2006, we surveyed two Fraxinus chinensis Roxb stands, damaged to different degrees, after the invasion of H. cunea in the Changping district of the Beijing area. Given our survey of individual trees and investigation of bio-environmental factors, we pro-vide a preliminarily simulation of the growth situation of F. chinensis stands, damaged by H. cunea, by using the Forest Vegetation Simulator software (FVS), which is supported by the "948" project from the State Forestry Administration of China. The results will provide a valuable reference in forecasting the effect of H. cunea and other invasive pests in China on forest ecological values.