期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Numerical simulation of flow and bed morphology in the case of dam break floods with vegetation effect 被引量:8
1
作者 张明亮 许媛媛 +3 位作者 乔洋 姜恒志 张钟哲 张国胜 《Journal of Hydrodynamics》 SCIE EI CSCD 2016年第1期23-32,共10页
The purpose of this study is to establish a depth-averaged 2-D hydrodynamic and sediment transport model for the dambreak flows with vegetation effect. The generalized shallow water equations are solved using an expli... The purpose of this study is to establish a depth-averaged 2-D hydrodynamic and sediment transport model for the dambreak flows with vegetation effect. The generalized shallow water equations are solved using an explicit finite volume method with unstructured quadtree rectangular grid, and in the hydrodynamic model, a Harten-Lax-Van Leer(HLL) approximate Riemann solver is used to calculate the intercell flux for capturing the dry-to-wet moving boundary. The sediment transport and bed variation equations in a coupled fashion are calculated by including the bed variation and the variable flow density in the flow continuity and momentum equations. The drag force of vegetation is modeled as the sink terms in the momentum equations. The developed model is tested against lab experiments of the dam-break flows over a fix bed and a movable bed in vegetated and non-vegetated channels. The results are compared with experimental data, and good agreement is obtained. It is shown that the reduced velocity under vegetated conditions leads to a decrease of the peak discharge and a rise of the water level of rivers and also an enhancement of the sediment deposition. 展开更多
关键词 finite volume method Harten-Lax-Van Leer(HLL) approximate Riemann solver sediment transport vegetation effect
原文传递
Soil erosion differences in paired grassland and forestland catchments on the Chinese Loess Plateau
2
作者 YANG Si-qi LUO Da +1 位作者 HAN Hao JIN Zhao 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1336-1348,共13页
In this study,two adjacent gauged catchments on the Chinese Loess Plateau were selected,in which one catchment was afforested and one was restored with natural vegetation in 1954.The distributions of soil erosion rate... In this study,two adjacent gauged catchments on the Chinese Loess Plateau were selected,in which one catchment was afforested and one was restored with natural vegetation in 1954.The distributions of soil erosion rates were estimated between 2010 and 2020 with a high spatial resolution of 2 m in the paired catchments based on the Revised Universal Soil Loss Equation model(RUSLE)and Geographic Information Systems(GIS).The results showed that the simulated soil erosion rates in 2010-2020 averaged 12.58 and 8.56 t ha^(-1)a^(-1)for the grassland and forestland catchment,respectively.Moreover,areas with high soil erosion rates(>80t ha^(-1)a^(-1))were mainly distributed in the topography with steep slope gradients(>45°).Comparisons between simulated soil erosion rates and observed annual sediment loads indicated that the simulation results of the grassland catchment were lower than the observed values,while it was reversed in the forestland catchment.We conclude that the RUSLE model cannot simulate the gravity erosion induced by extreme rainfall events.For the forestland catchment,insufficient streamflow and dense vegetation coverage are crucial factors resulting in hindering the movement of sediments. 展开更多
关键词 Catchment comparison Soil erosion RUSLE model vegetation effect Topography effect Spatial analysis
下载PDF
Estimation of Shallow Landslide Susceptibility Incorporating the Impacts of Vegetation on Slope Stability
3
作者 Hu Jiang Qiang Zou +4 位作者 Bin Zhou Yao Jiang Junfang Cui Hongkun Yao Wentao Zhou 《International Journal of Disaster Risk Science》 SCIE CSCD 2023年第4期618-635,共18页
This study aimed to develop a physical-based approach for predicting the spatial likelihood of shallow landslides at the regional scale in a transition zone with extreme topography.Shallow landslide susceptibility stu... This study aimed to develop a physical-based approach for predicting the spatial likelihood of shallow landslides at the regional scale in a transition zone with extreme topography.Shallow landslide susceptibility study in an area with diverse vegetation types as well as distinctive geographic factors(such as steep terrain,fractured rocks,and joints)that dominate the occurrence of shallow landslides is challenging.This article presents a novel methodology for comprehensively assessing shallow landslide susceptibility,taking into account both the positive and negative impacts of plants.This includes considering the positive efects of vegetation canopy interception and plant root reinforcement,as well as the negative efects of plant gravity loading and preferential fow of root systems.This approach was applied to simulate the regional-scale shallow landslide susceptibility in the Dadu River Basin,a transition zone with rapidly changing terrain,uplifting from the Sichuan Plain to the Qinghai–Tibet Plateau.The research fndings suggest that:(1)The proposed methodology is efective and capable of assessing shallow landslide susceptibility in the study area;(2)the proposed model performs better than the traditional pseudo-static analysis method(TPSA)model,with 9.93%higher accuracy and 5.59%higher area under the curve;and(3)when the ratio of vegetation weight loads to unstable soil mass weight is high,an increase in vegetation biomass tends to be advantageous for slope stability.The study also mapped the spatial distribution of shallow landslide susceptibility in the study area,which can be used in disaster prevention,mitigation,and risk management. 展开更多
关键词 Physical-based model Qinghai-Tibet Plateau Shallow landslide Susceptibility analysis vegetation effect
原文传递
Evaluating alternative hypotheses behind biodiversity and multifunctionality relationships in the forests of Northeastern China 被引量:1
4
作者 Qingmin Yue Minhui Hao +5 位作者 Yan Geng Xuerui Wang Klaus von Gadow Chunyu Zhang Xiuhai Zhao Lushuang Gao 《Forest Ecosystems》 SCIE CSCD 2022年第3期301-310,共10页
Background:The importance of biodiversity in maintaining multiple ecosystem functions has been widely accepted.However,the specific mechanisms affecting biodiversity and ecosystem multifunctionality(BEMF)relationships... Background:The importance of biodiversity in maintaining multiple ecosystem functions has been widely accepted.However,the specific mechanisms affecting biodiversity and ecosystem multifunctionality(BEMF)relationships in forests are largely unknown.This is particularly evident for the macroscale of a large forested landscape.Methods:Based on 412 one-tenth hectare field plots distributed over forested areas across northeastern China,we evaluated three alternative hypotheses explaining the relationships between BEMF,namely:niche complementarity,mass ratio,and vegetation quantity effect.We used Rao's quadratic entropy and community weighted mean trait values to quantify forest“biodiversity”.These two variables represent two complementary aspects of functional properties,which are in line with niche complementary and mass ratio effects,respectively.Results:Ecosystem multifunctionality was negatively associated with the community weighted mean values of acquisitive traits(a proxy of mass ratio effect).Rao's quadratic entropy(a proxy of niche complementarity)had no relationship with ecosystem multifunctionality.Higher stand biomass greatly increased ecosystem multifunctionality,which is in line with the vegetation quantity effect.Our results confirm that in the temperate forests of northeastern China,the relationship of BEMF was primarily affected by vegetation quantity,followed by mass ratio effects.Conclusions:The results of this study contribute to a better understanding of the main drivers of ecosystem multifunctionality in forest ecosystems.The results of this study provide additional evidence to support the vegetation quantity and mass ratio hypotheses in forest ecosystems. 展开更多
关键词 Biodiversity and ecosystem multifunctionality Biomass Functional traits Mass ratio effect Niche complementarity effect vegetation quantity effect
下载PDF
Effects of Dynamic Vegetation on Global Climate Simulation Using the NCEP GFS and SSiB4/TRIFFID 被引量:1
5
作者 Zhengqiu ZHANG Yongkang XUE +1 位作者 Panmao ZHAI Huiping DENG 《Journal of Meteorological Research》 SCIE CSCD 2021年第6期1041-1056,共16页
Two global experiments were carried out to investigate the effects of dynamic vegetation processes on numerical climate simulations from 1948 to 2008.The NCEP Global Forecast System(GFS)was coupled with a biophysical ... Two global experiments were carried out to investigate the effects of dynamic vegetation processes on numerical climate simulations from 1948 to 2008.The NCEP Global Forecast System(GFS)was coupled with a biophysical model,the Simplified Simple Biosphere Model(SSi B)version 2(GFS/SSi B2),and it was also coupled with a biophysical and dynamic vegetation model,SSi B version 4/Top-down Representation of Interactive Foliage and Flora Including Dynamics(TRIFFID)(GFS/SSi B4/TRIFFID).The effects of dynamic vegetation processes on the simulation of precipitation,near-surface temperature,and the surface energy budget were identified on monthly and annual scales by assessing the GFS/SSi B4/TRIFFID and GFS/SSi B2 results against the satellite-derived leaf area index(LAI)and albedo and the observed land surface temperature and precipitation.The results show that compared with the GFS/SSiB2 model,the temporal correlation coefficients between the globally averaged monthly simulated LAI and the Global Inventory Monitoring and Modeling System(GIMMS)/Global Land Surface Satellite(GLASS)LAI in the GFS/SSi B4/TRIFFID simulation increased from 0.31/0.29(SSiB2)to 0.47/0.46(SSiB4).The correlation coefficients between the simulated and observed monthly mean near-surface air temperature increased from 0.50(Africa),0.35(Southeast Asia),and 0.39(South America)to 0.56,0.41,and 0.44,respectively.The correlation coefficients between the simulated and observed monthly mean precipitation increased from 0.19(Africa),0.22(South Asia),and 0.22(East Asia)to 0.25,0.27,and 0.28,respectively.The greatest improvement occurred over arid and semiarid areas.The spatiotemporal variability and changes in vegetation and ground surface albedo modeled by the GFS with a dynamic vegetation model were more consistent with the observations.The dynamic vegetation processes contributed to the surface energy and water balance and in turn,improved the annual variations in the simulated regional temperature and precipitation.The dynamic vegetation processes had the greatest influence on the spatiotemporal changes in the latent heat flux.This study shows that dynamic vegetation processes in earth system models significantly improve simulations of the climate mean status. 展开更多
关键词 NCEP Global Forecast System(GFS) Simplified Simple Biosphere Model version 4/Top-down Representation of Interactive Foliage and Flora Including Dynamics(SSiB4/TRIFFID) global climate simulation effects of dynamic vegetation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部