期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The spatial relationship between salt marsh vegetation patterns,soil elevation and tidal channels using remote sensing at Chongming Dongtan Nature Reserve, China 被引量:7
1
作者 ZHENG Zongsheng ZHOU Yunxuan +1 位作者 TIAN Bo DING Xianwen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第4期26-34,共9页
The analysis of vegetation-environment relationships has always been a study hotspot in ecology. A number of biotic, hydrologic and edaphic factors have great influence on the distribution of macrophytes within salt m... The analysis of vegetation-environment relationships has always been a study hotspot in ecology. A number of biotic, hydrologic and edaphic factors have great influence on the distribution of macrophytes within salt marsh.Since the exotic species Spartina alterniflora(S. alterniflora) was introduced in 1995, a rapid expansion has occurred at Chongming Dongtan Nature Reserve(CDNR) in the Changjiang(Yangtze) River Estuary, China.Several important vegetation-environment factors including soil elevation, tidal channels density(TCD),vegetation classification and fractional vegetation cover(FVC) were extracted by remote sensing method combined with field measurement. To ignore the details in interaction between biological and physical process,the relationship between them was discussed at a large scale of the whole saltmarsh. The results showed that Scirpus mariqueter(S. mariqueter) can endure the greatest elevation variance with 0.33 m throughout the marsh in CDNR. But it is dominant in the area less than 2.5 m with the occurrence frequency reaching 98%. S. alterniflora has usually been found on the most elevated soils higher than 3.5 m but has a narrow spatial distribution. The rapid decrease of S. mariqueter can be explained by stronger competitive capacity of S. alterniflora on the high tidal flat. FVC increases with elevation which shows significant correlation with elevation(r=0.30, p〈0.001). But the frequency distribution of FVC indicates that vegetation is not well developed on both elevated banks near tidal channels from the whole scale mainly due to tidal channel lateral swing and human activities. The significant negative correlation(r=–0.20, p〈0.001) was found between FVC and TCD, which shows vegetation is restricted to grow in higher TCD area corresponding to lower elevation mainly occupied by S. mariqueter communities. The maximum occurrence frequency of this species reaches to 97% at the salt marsh with TCD more than 8 m/m2. 展开更多
关键词 remote sensing vegetation patterns Chongming Dongtan Nature Reserve salt marshes environmental factors
下载PDF
Derivative vegetation indices as a new approach in remote sensing of vegetation
2
作者 Svetlana M.KOCHUBEY Taras A.KAZANTSEV 《Frontiers of Earth Science》 SCIE CAS CSCD 2012年第2期188-195,共8页
This paper focuses on the advantages of derivative vegetation indices over simple reflectance- based indices that are traditionally used for remote sensing of vegetation. The idea of using reflectance derivatives inst... This paper focuses on the advantages of derivative vegetation indices over simple reflectance- based indices that are traditionally used for remote sensing of vegetation. The idea of using reflectance derivatives instead of simple reflectance spectra was proposed several decades ago. Despite this, it has not been widely used in monitoring systems because the derivatives lack reliable parameters. In addition, most satellite monitoring systems are not equipped with hyperspectral sensors, which are considered necessary for operating with the reflectance derivatives. Here, we present original data indicating that the chlorophyll-related derivative index D725/D702 we derived can be accurately estimated from a reflectance spectrum of 10 nm resolution that would be suitable for most satellite-based sensors. Furthermore, the index is not sensitive to soil reflectance and can therefore be used for testing of open crops. Presence of blanc reflectance is also unnecessary. Preliminary results of index testing are presented. Perspectives on using this and other derivative indices are discussed. 展开更多
关键词 derivative vegetation indices remote sensing vegetation status
原文传递
Causal effects of shelter forests and water factors on desertification control during 2000–2010 at the Horqin Sandy Land region, China 被引量:5
3
作者 Qiaoling Yan Jiaojun Zhu +1 位作者 Xiao Zheng Changjie Jin 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第1期33-45,共13页
The Horqin Sandy Land(HSL), the largest sandy land in the semi-arid agro-pastoral ecotone of Northeast China, has been subject to desertification during the past century. In response, and to control the desertificat... The Horqin Sandy Land(HSL), the largest sandy land in the semi-arid agro-pastoral ecotone of Northeast China, has been subject to desertification during the past century. In response, and to control the desertification,government implemented the Three-North Shelter/Protective Forest Program, world's largest ecological reforestation/afforestation restoration program. The program began in1978 and will continue for 75 years until 2050. Understanding the dynamics of desertification and its driving forces is a precondition for controlling desertification.However, there is little evidence to directly link causal effects with desertification process(i.e., on the changing area of sandy land) because desertification is a complex process,that can be affected by vegetation(including vegetation cover and extent of shelter forests) and water factors such as precipitation, surface soil moisture, and evapotranspiration.The objectives of this study were to identify how influencing factors, especially shelter forests, affected desertification in HSL over a recent decade. We used Landsat TM imagery analysis and path analysis to identify the effects of spatiotemporal changes in water and vegetation parameters during2000–2010. Desertification was controlled during the study period, as indicated by a decrease in desert area at a rate of163.3 km2year-1and an increase in the area with reduced intensity or extent of desertification. Total vegetation cover in HSL increased by 10.6 % during the study period and this factor exerted the greatest direct and indirect effects on slowing desertification. The contribution of total vegetation cover to controlling desertification increased with the intensity of desertification. On slightly and extremely severe desertified areas, vegetation cover contributed 5 and 42 % of the desertification reduction, respectively. There were significant correlations between total vegetation cover and water conditions(i.e., evapotranspiration and precipitation)and the area of shelter forests(P / 0.0001), in which water conditions and the existence of shelter forests contributed49.7 and 12.8 % to total vegetation cover, respectively. The area of shelter forests increased sharply due to program efforts, but only shrub forests had significant direct effects on reducing the area of desertification categorized as slightly desertified. The reason for the lack of direct effect of increased arbor forests(accounting for 95.3 % of the total increase in shelter forests) on reducing desertification might be that the selected arbor species were not suited to water conditions(low precipitation, high evapotranspiration) prevailing at HSL. The establishment of shelter forests aided control of desertification in the HSL region, but the effect was less than expected. Effective control of desertification in the HSL region or other similar sandy areas will require greater improvements in vegetation cover. In particular,shrub species should be selected for plantation with reference to their potential to survive and reproduce in the harsh climatic and weather conditions typical of desertified areas. 展开更多
关键词 The Three-North Shelter Forest Program Precipitation remote sensing vegetation cover Semi-arid region
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部