This paper explores the potential to improve the impervious surface estimation accuracy using a multi-stage approach on the basis of vegetation-impervious surface-soil (V-I-S) model. In the first stage of Spectral Mix...This paper explores the potential to improve the impervious surface estimation accuracy using a multi-stage approach on the basis of vegetation-impervious surface-soil (V-I-S) model. In the first stage of Spectral Mixture Analysis (SMA) process, pixel purity index, a quantitative index for defining endmember quality, and a 3-dimensional endmember selection method were applied to refining endmembers. In the second stage, instead of obtaining impervious surface fraction by adding high and low albedo fractions directly, a linear regression model was built between impervious surface and high/low albedo using a random sampling method. The urban impervious surface distribution in the urban central area of Shanghai was predicted by the linear regression model. Estimation accuracy of spectral mixture analysis and impervious surface fraction were assessed using root mean square (RMS) and color aerial photography respectively. In comparison with three different research methods, this improved estimation method has a higher overall accuracy than traditional Linear Spectral Mixture Analysis (LSMA) method and the normalized SMA model both in root mean square error (RMSE) and standard error (SE). However, the model has a tendency to overestimate the impervious surface distribution.展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 40701177)
文摘This paper explores the potential to improve the impervious surface estimation accuracy using a multi-stage approach on the basis of vegetation-impervious surface-soil (V-I-S) model. In the first stage of Spectral Mixture Analysis (SMA) process, pixel purity index, a quantitative index for defining endmember quality, and a 3-dimensional endmember selection method were applied to refining endmembers. In the second stage, instead of obtaining impervious surface fraction by adding high and low albedo fractions directly, a linear regression model was built between impervious surface and high/low albedo using a random sampling method. The urban impervious surface distribution in the urban central area of Shanghai was predicted by the linear regression model. Estimation accuracy of spectral mixture analysis and impervious surface fraction were assessed using root mean square (RMS) and color aerial photography respectively. In comparison with three different research methods, this improved estimation method has a higher overall accuracy than traditional Linear Spectral Mixture Analysis (LSMA) method and the normalized SMA model both in root mean square error (RMSE) and standard error (SE). However, the model has a tendency to overestimate the impervious surface distribution.