期刊文献+
共找到4,043篇文章
< 1 2 203 >
每页显示 20 50 100
Multi-circular formation control with reinforced transient profiles for nonholonomic vehicles:A path-following framework
1
作者 Jintao Zhang Xingling Shao +1 位作者 Wendong Zhang Zongyu Zuo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期278-287,共10页
This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the fe... This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the feature of spatial-temporal decoupling is devised for a group of vehicles guided by a virtual leader evolving along an implicit path,which allows for a circumnavigation on multiple circles with an anticipant angular spacing.In addition,notice that it typically imposes a stringent time constraint on time-sensitive enclosing scenarios,hence an improved prescribed performance control(IPPC)using novel tighter behavior boundaries is presented to enhance transient capabilities with an ensured appointed-time convergence free from any overshoots.The significant merits are that coordinated circumnavigation along different circles can be realized via executing geometric and dynamic assignments independently with modified transient profiles.Furthermore,all variables existing in the entire system are analyzed to be convergent.Simulation and experimental results are provided to validate the utility of suggested solution. 展开更多
关键词 Multi-circular formation Reinforced transient profiles Nonholonomic vehicles Path following
下载PDF
Two-layer formation-containment fault-tolerant control of fixed-wing UAV swarm for dynamic target tracking 被引量:1
2
作者 QIN Boyu ZHANG Dong +1 位作者 TANG Shuo XU Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1375-1396,共22页
This paper tackles the formation-containment control problem of fixed-wing unmanned aerial vehicle(UAV)swarm with model uncertainties for dynamic target tracking in three-dimensional space in the faulty case of UAVs’... This paper tackles the formation-containment control problem of fixed-wing unmanned aerial vehicle(UAV)swarm with model uncertainties for dynamic target tracking in three-dimensional space in the faulty case of UAVs’actuator and sensor.The fixed-wing UAV swarm under consideration is organized as a“multi-leader-multi-follower”structure,in which only several leaders can obtain the dynamic target information while others only receive the neighbors’information through the communication network.To simultaneously realize the formation,containment,and dynamic target tracking,a two-layer control framework is adopted to decouple the problem into two subproblems:reference trajectory generation and trajectory tracking.In the upper layer,a distributed finite-time estimator(DFTE)is proposed to generate each UAV’s reference trajectory in accordance with the control objective.Subsequently,a distributed composite robust fault-tolerant trajectory tracking controller is developed in the lower layer,where a novel adaptive extended super-twisting(AESTW)algorithm with a finite-time extended state observer(FTESO)is involved in solving the robust trajectory tracking control problem under model uncertainties,actuator,and sensor faults.The proposed controller simultaneously guarantees rapidness and enhances the system’s robustness with fewer chattering effects.Finally,corresponding simulations are carried out to demonstrate the effectiveness and competitiveness of the proposed two-layer fault-tolerant cooperative control scheme. 展开更多
关键词 fixed-wing unmanned aerial vehicle(uav)swarm two-layer control formation-containment dynamic target tracking
下载PDF
Nonlinear direct data-driven control for UAV formation flight system
3
作者 WANG Jianhong Ricardo A.RAMIREZ-MENDOZA XU Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1409-1418,共10页
This paper proposes the nonlinear direct data-driven control from theoretical analysis and practical engineering,i.e.,unmanned aerial vehicle(UAV)formation flight system.Firstly,from the theoretical point of view,cons... This paper proposes the nonlinear direct data-driven control from theoretical analysis and practical engineering,i.e.,unmanned aerial vehicle(UAV)formation flight system.Firstly,from the theoretical point of view,consider one nonlinear closedloop system with a nonlinear plant and nonlinear feed-forward controller simultaneously.To avoid the complex identification process for that nonlinear plant,a nonlinear direct data-driven control strategy is proposed to design that nonlinear feed-forward controller only through the input-output measured data sequence directly,whose detailed explicit forms are model inverse method and approximated analysis method.Secondly,from the practical point of view,after reviewing the UAV formation flight system,nonlinear direct data-driven control is applied in designing the formation controller,so that the followers can track the leader’s desired trajectory during one small time instant only through solving one data fitting problem.Since most natural phenomena have nonlinear properties,the direct method must be the better one.Corresponding system identification and control algorithms are required to be proposed for those nonlinear systems,and the direct nonlinear controller design is the purpose of this paper. 展开更多
关键词 nonlinear system nonlinear direct data-driven control model inverse control unmanned aerial vehicle(uav)formation flight.
下载PDF
A method to interpret fracture aperture of rock slope using adaptive shape and unmanned aerial vehicle multi-angle nap-of-the-object photogrammetry 被引量:1
4
作者 Mingyu Zhao Shengyuan Song +3 位作者 Fengyan Wang Chun Zhu Dianze Liu Sicong Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期924-941,共18页
The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods ... The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance. 展开更多
关键词 Unmanned aerial vehicle(uav) PHOTOGRAMMETRY High-steep rock slope Fracture aperture Interval effect Size effect Parameter interpretation
下载PDF
Received Power Based Unmanned Aerial Vehicles (UAVs) Jamming Detection and Nodes Classification Using Machine Learning
5
作者 Waleed Aldosari 《Computers, Materials & Continua》 SCIE EI 2023年第4期1253-1269,共17页
This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional ... This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional interference where a malicious node transmits a high-power signal to increase noise on the receiver side to disrupt the communication channel and reduce performance significantly.To defend and prevent such attacks,the first step is to detect them.The current detection approaches use centralized techniques to detect jamming,where each node collects information and forwards it to the base station.As a result,overhead and communication costs increased.In this work,we present a jamming attack and classify nodes into different categories based on their location to the jammer by employing a single node observer.As a result,we introduced a machine learning model that uses distance ratios and power received as features to detect such attacks.Furthermore,we considered several types of jammers transmitting at different power levels to evaluate the proposed metrics using MATLAB.With a detection accuracy of 99.7%for the k-nearest neighbors(KNN)algorithm and average testing accuracy of 99.9%,the presented solution is capable of efficiently and accurately detecting jamming attacks in wireless sensor networks. 展开更多
关键词 Jamming attacks machine learning unmanned aerial vehicle(uav) WSNS
下载PDF
Nonlinear tight formation control of multiple UAVs based on model predictive control
6
作者 Ruiping Zheng Yongxi Lyu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期69-75,共7页
A tight formation of unmanned aerial vehicles(UAVs) has many advantages, such as fuel saving and deceiving enemy radar during battlefield entry. As a result, research on UAVs in close formation has received much atten... A tight formation of unmanned aerial vehicles(UAVs) has many advantages, such as fuel saving and deceiving enemy radar during battlefield entry. As a result, research on UAVs in close formation has received much attention, and the controller design for formation holding has become a popular research topic in the control field. However, there are many unknown disturbances in tight formation, and the tail aircraft is disturbed by the wake. This paper establishes a mathematical model of wake vortices for tail aircraft that considers uncertainty and strong interference. Two UAVs are simulated by Computational Fluid Dynamics software, followed by the design of a semiphysical simulation model predictive control(MPC) scheme that suppresses uncertainty and interference sufficiently to enable the tail aircraft to accurately track the lead aircraft and maintain a stable, tight formation. The tight formation controller is verified by numerical simulation and semiphysical simulation. The results show that the designed controller has an excellent control effect in the case of disturbance caused by the wake vortex. 展开更多
关键词 Unmanned aerial vehicles Tight formation Wake vortex model Model predictive control
下载PDF
IRS Assisted UAV Communications against Proactive Eavesdropping in Mobile Edge Computing Networks 被引量:1
7
作者 Ying Zhang Weiming Niu Leibing Yan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期885-902,共18页
In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of ... In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes. 展开更多
关键词 Mobile edge computing(MEC) unmanned aerial vehicle(uav) intelligent reflecting surface(IRS) zero forcing(ZF)
下载PDF
An Investigation of Purely Azimuthal Passive Localization and Position Adjustment in Attempted UAV Formation Flights
8
作者 Qi Zhang Keren Sun Qiaozhen Zhang 《Journal of Applied Mathematics and Physics》 2023年第10期3075-3098,共24页
When a cluster of unmanned aerial vehicles (UAVs) is flying in formation, it is crucial to maintain the formation and not to be interfered by external electromagnetic wave signals. In order to maintain the formation, ... When a cluster of unmanned aerial vehicles (UAVs) is flying in formation, it is crucial to maintain the formation and not to be interfered by external electromagnetic wave signals. In order to maintain the formation, this paper proposes to use pure azimuth passive positioning to adjust the position of UAVs, i.e., certain UAVs in the formation transmit signals, the rest of the UAVs receive the signals passively, and extract the orientation information from them to adjust the position of the UAVs [1] [2] [3]. In this paper, the position adjustment problem of UAVs in “circular” formation flight under three models is investigated. To address the problem of “how to obtain the position of the receiving UAV when there are two UAVs with known numbers and evenly distributed on the circumference in addition to the UAV transmitting at the known center of the circle, and the rest of the UAVs with slight deviations in their positions are receiving the signals”, two purely mathematical geometric methods, namely, triangular localization method and polar co-ordinate method, are proposed respectively. We have determined the position of the receiving UAV;we have used the exhaustive method and the construction and disproof method to solve the problem of “how many UAVs are needed to transmit signals in order to realize the effective positioning of the UAVs when it is known that a certain UAV with a slight deviation in its position receives the signals emitted by two UAVs at the same time”, and the results show that: in addition to the known signals emitted by two UAVs, it is also necessary to transmit the signals emitted by two UAVs. The results show that in addition to the known two UAVs transmitting signals, two additional UAVs are required to transmit signals for precise po-sitioning. When the position of UAVs has deviation at the initial moment, the ideal approximation method and the target delimitation method are pro-posed, and the target of nine UAVs uniformly distributed on a circle of a spe-cific radius is achieved through several adjustments, after which the ad-vantages and disadvantages of each model are analyzed, and suggestions for improvement are put forward. The purely azimuthal passive localization method and the constructed model approach proposed in this paper can be extended to other fields, such as spacecraft formations in space and battle-ship formations at sea, as well as other formation flight position adjustment problems. 展开更多
关键词 Pure Azimuth Passive Positioning Unmanned Aerial vehicle (uav) Position Adjustment Electromagnetic Silence
下载PDF
Multi-UAVs Collaborative Path Planning in the Cramped Environment
9
作者 Siyuan Feng Linzhi Zeng +2 位作者 Jining Liu Yi Yang Wenjie Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期529-538,共10页
Due to its flexibility and complementarity, the multiUAVs system is well adapted to complex and cramped workspaces, with great application potential in the search and rescue(SAR) and indoor goods delivery fields. Howe... Due to its flexibility and complementarity, the multiUAVs system is well adapted to complex and cramped workspaces, with great application potential in the search and rescue(SAR) and indoor goods delivery fields. However, safe and effective path planning of multiple unmanned aerial vehicles(UAVs)in the cramped environment is always challenging: conflicts with each other are frequent because of high-density flight paths, collision probability increases because of space constraints, and the search space increases significantly, including time scale, 3D scale and model scale. Thus, this paper proposes a hierarchical collaborative planning framework with a conflict avoidance module at the high level and a path generation module at the low level. The enhanced conflict-base search(ECBS) in our framework is improved to handle the conflicts in the global path planning and avoid the occurrence of local deadlock. And both the collision and kinematic models of UAVs are considered to improve path smoothness and flight safety. Moreover, we specifically designed and published the cramped environment test set containing various unique obstacles to evaluating our framework performance thoroughly. Experiments are carried out relying on Rviz, with multiple flight missions: random, opposite, and staggered, which showed that the proposed method can generate smooth cooperative paths without conflict for at least 60 UAVs in a few minutes.The benchmark and source code are released in https://github.com/inin-xingtian/multi-UAVs-path-planner. 展开更多
关键词 Collision avoidance conflict resolution multi-unmanned aerial vehicles(uavs)system path planning
下载PDF
Cooperative UAV search strategy based on DMPC-AACO algorithm in restricted communication scenarios
10
作者 Shiyuan Chai Zhen Yang +3 位作者 Jichuan Huang Xiaoyang Li Yiyang Zhao Deyun Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期295-311,共17页
Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research pr... Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research problem.In certain mission environments,due to the impact of many interference sources on real-time communication or mission requirements such as the need to implement communication regulations,the mission stages are represented as a dynamic combination of several communication-available and communication-unavailable stages.Furthermore,the data interaction between unmanned aerial vehicles(UAVs)can only be performed in specific communication-available stages.Traditional cooperative search algorithms cannot handle such situations well.To solve this problem,this study constructed a distributed model predictive control(DMPC)architecture for a collaborative control of UAVs and used the Voronoi diagram generation method to re-plan the search areas of all UAVs in real time to avoid repetition of search areas and UAV collisions while improving the search efficiency and safety factor.An attention mechanism ant-colony optimization(AACO)algorithm is proposed for UAV search-control decision planning.The search strategy is adaptively updated by introducing an attention mechanism for regular instruction information,a priori information,and emergent information of the mission to satisfy different search expectations to the maximum extent.Simulation results show that the proposed algorithm achieves better search performance than traditional algorithms in restricted communication constraint scenarios. 展开更多
关键词 Unmanned aerial vehicles(uav) Cooperative search Restricted communication Mission planning DMPC-AACO
下载PDF
Heat transfer and temperature evolution in underground mininginduced overburden fracture and ground fissures: Optimal time window of UAV infrared monitoring
11
作者 Yixin Zhao Kangning Zhang +2 位作者 Bo Sun Chunwei Ling Jihong Guo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期31-50,共20页
Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this st... Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this study, discrete element software UDEC was employed to investigate the overburden fracture field under different mining conditions. Multiphysics software COMSOL were employed to investigate heat transfer and temperature evolution of overburden fracture and ground fissures under the influence of mining condition, fissure depth, fissure width, and month alternation. The UAV infrared field measurements also provided a calibration for numerical simulation. The results showed that for ground fissures connected to underground goaf(Fissure Ⅰ), the temperature difference increased with larger mining height and shallow buried depth. In addition, Fissure Ⅰ located in the boundary of the goaf have a greater temperature difference and is easier to be identified than fissures located above the mining goaf. For ground fissures having no connection to underground goaf(Fissure Ⅱ), the heat transfer is affected by the internal resistance of the overlying strata fracture when the depth of Fissure Ⅱ is greater than10 m, the temperature of Fissure Ⅱ gradually equals to the ground temperature as the fissures’ depth increases, and the fissures are difficult to be identified. The identification effect is most obvious for fissures larger than 16 cm under the same depth. In spring and summer, UAV infrared identification of mining fissures should be carried out during nighttime. This study provides the basis for the optimal time and season for the UAV infrared identification of different types of mining ground fissures. 展开更多
关键词 Heat transfer Overburden fracture Ground fissures Infrared thermal imaging Unmanned aerial vehicle(uav) COMSOL simulation
下载PDF
Cooperative Anti-Jamming and Interference Mitigation for UAV Networks: A Local Altruistic Game Approach
12
作者 Yueyue Su Nan Qi +2 位作者 Zanqi Huang Rugui Yao Luliang Jia 《China Communications》 SCIE CSCD 2024年第2期183-196,共14页
To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference a... To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference and external malicious jamming. A cooperative anti-jamming and interference mitigation method based on local altruistic is proposed to optimize UAVs’ channel selection. Specifically, a Stackelberg game is modeled to formulate the confrontation relationship between UAVs and the jammer. A local altruistic game is modeled with each UAV considering the utilities of both itself and other UAVs. A distributed cooperative anti-jamming and interference mitigation algorithm is proposed to obtain the Stackelberg equilibrium. Finally, the convergence of the proposed algorithm and the impact of the transmission power on the system loss value are analyzed, and the anti-jamming performance of the proposed algorithm can be improved by around 64% compared with the existing algorithms. 展开更多
关键词 channel selection cooperative antijamming and interference mitigation local altruistic game Stackelberg game unmanned aerial vehicle(uav)
下载PDF
Outage Analysis of Optimal UAV Cooperation with IRS via Energy Harvesting Enhancement Assisted Computational Offloading
13
作者 Baofeng Ji Ying Wang +2 位作者 Weixing Wang Shahid Mumtaz Charalampos Tsimenidis 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1885-1905,共21页
The utilization of mobile edge computing(MEC)for unmanned aerial vehicle(UAV)communication presents a viable solution for achieving high reliability and low latency communication.This study explores the potential of e... The utilization of mobile edge computing(MEC)for unmanned aerial vehicle(UAV)communication presents a viable solution for achieving high reliability and low latency communication.This study explores the potential of employing intelligent reflective surfaces(IRS)andUAVs as relay nodes to efficiently offload user computing tasks to theMEC server system model.Specifically,the user node accesses the primary user spectrum,while adhering to the constraint of satisfying the primary user peak interference power.Furthermore,the UAV acquires energy without interrupting the primary user’s regular communication by employing two energy harvesting schemes,namely time switching(TS)and power splitting(PS).The selection of the optimal UAV is based on the maximization of the instantaneous signal-to-noise ratio.Subsequently,the analytical expression for the outage probability of the system in Rayleigh channels is derived and analyzed.The study investigates the impact of various system parameters,including the number of UAVs,peak interference power,TS,and PS factors,on the system’s outage performance through simulation.The proposed system is also compared to two conventional benchmark schemes:the optimal UAV link transmission and the IRS link transmission.The simulation results validate the theoretical derivation and demonstrate the superiority of the proposed scheme over the benchmark schemes. 展开更多
关键词 Unmanned aerial vehicle(uav) intelligent reflective surface(IRS) energy harvesting computational offloading outage probability
下载PDF
Real-time UAV path planning based on LSTM network
14
作者 ZHANG Jiandong GUO Yukun +3 位作者 ZHENG Lihui YANG Qiming SHI Guoqing WU Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期374-385,共12页
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on... To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning. 展开更多
关键词 deep Q network path planning neural network unmanned aerial vehicle(uav) long short-term memory(LSTM)
下载PDF
Energy Efficiency Maximization in Mobile Edge Computing Networks via IRS assisted UAV Communications
15
作者 Ying Zhang Weiming Niu +1 位作者 Supu Xiu Guangchen Mu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1865-1884,共20页
In this paper,we investigate the energy efficiency maximization for mobile edge computing(MEC)in intelligent reflecting surface(IRS)assisted unmanned aerial vehicle(UAV)communications.In particular,UAVcan collect the ... In this paper,we investigate the energy efficiency maximization for mobile edge computing(MEC)in intelligent reflecting surface(IRS)assisted unmanned aerial vehicle(UAV)communications.In particular,UAVcan collect the computing tasks of the terrestrial users and transmit the results back to them after computing.We jointly optimize the users’transmitted beamforming and uploading ratios,the phase shift matrix of IRS,and the UAV trajectory to improve the energy efficiency.The formulated optimization problem is highly non-convex and difficult to be solved directly.Therefore,we decompose the original problem into three sub-problems.We first propose the successive convex approximation(SCA)based method to design the beamforming of the users and the phase shift matrix of IRS,and apply the Lagrange dual method to obtain a closed-form expression of the uploading ratios.For the trajectory optimization,we propose a block coordinate descent(BCD)based method to obtain a local optimal solution.Finally,we propose the alternating optimization(AO)based overall algorithmand analyzed its complexity to be equivalent or lower than existing algorithms.Simulation results show the superiority of the proposedmethod compared with existing schemes in energy efficiency. 展开更多
关键词 Mobile edge computing(MEC) unmanned aerial vehicle(uav) intelligent reflecting surface(IRS) energy efficiency
下载PDF
Underdetermined direction of arrival estimation with nonuniform linear motion sampling based on a small unmanned aerial vehicle platform
16
作者 Xinwei Wang Xiaopeng Yan +2 位作者 Tai An Qile Chen Dingkun Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期352-363,共12页
Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf... Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method. 展开更多
关键词 Unmanned aerial vehicle(uav) Uniform linear array(ULA) Direction of arrival(DOA) Difference co-array Nonuniform linear motion sampling method
下载PDF
Energy-efficient joint UAV secure communication and 3D trajectory optimization assisted by reconfigurable intelligent surfaces in the presence of eavesdroppers
17
作者 Huang Hailong Mohsen Eskandari +1 位作者 Andrey V.Savkin Wei Ni 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期537-543,共7页
We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reco... We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations. 展开更多
关键词 Unmanned aerial systems(UASs) Unmanned aerial vehicle(uav) Communication security Eaves-dropping Reconfigurable intelligent surfaces(RIS) Autonomous navigation and placement Path planning Model predictive control
下载PDF
UAV协助下非正交多址接入使能的数据采集系统中能效优化机制
18
作者 唐睿 岳士博 +2 位作者 张睿智 刘川 庞川林 《计算机应用》 CSCD 北大核心 2024年第4期1209-1218,共10页
无人机(UAV)协助下非正交多址接入(NOMA)使能的数据采集系统,考虑了地空概率信道模型和服务质量约束,并联合优化UAV三维布局设计和传感器功率分配最大化所有传感器的总能效。针对原混合整数非凸规划问题,提出了一种基于凸优化理论、深... 无人机(UAV)协助下非正交多址接入(NOMA)使能的数据采集系统,考虑了地空概率信道模型和服务质量约束,并联合优化UAV三维布局设计和传感器功率分配最大化所有传感器的总能效。针对原混合整数非凸规划问题,提出了一种基于凸优化理论、深度学习理论和哈里斯鹰优化(HHO)算法的能效优化机制。在任意给定的UAV三维布局下,首先将功率分配子问题等价转化为凸优化问题;其次基于最优的功率分配方案,采用深度神经网络(DNN)构建从传感器位置到UAV三维布局的映射,并利用HHO算法离线训练最佳映射对应的模型参数。训练后的机制仅需执行少量代数运算并求解单个凸优化问题。仿真实验结果表明,在传感器数为12的情况下,相较于基于粒子群算法的遍历搜索机制,所提机制在仅损失约4.73%的总能效的情况下将运算时间降低了5个数量级。 展开更多
关键词 无人机通信 非正交多址接入 能效 资源分配 凸优化 深度学习 哈里斯鹰优化算法
下载PDF
MAV/UAV task coalition phased-formation method 被引量:8
19
作者 JIAO Zhiqiang YAO Peiyang +2 位作者 ZHANG Jieyong ZHONG Yun WANG Xun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第2期402-414,共13页
The formation of the manned aerial vehicle/unmanned aerial vehicle(MAV/UAV) task coalition is considered. To reduce the scale of the problem, the formation progress is divided into three phases. For the task clusterin... The formation of the manned aerial vehicle/unmanned aerial vehicle(MAV/UAV) task coalition is considered. To reduce the scale of the problem, the formation progress is divided into three phases. For the task clustering phase, the geographical position of tasks is taken into consideration and a cluster method is proposed. For the UAV allocation phase, the UAV requirement for both constrained and unconstrained resources is introduced, and a multi-objective optimal algorithm is proposed to solve the allocation problem. For the MAV allocation phase, the optimal model is firstly constructed and it is decomposed according to the ideal of greed to reduce the time complexity of the algorithm. Based on the above phases, the MAV/UAV task coalition formation method is proposed and the effectiveness and practicability are demonstrated by simulation examples. 展开更多
关键词 TASK coalition formation TASK clustering unmanned AERIAL vehicle (uav) ALLOCATION manned AERIAL vehicle (MAV) ALLOCATION
下载PDF
Multiple UAVs cooperative formation forming control based on back-stepping-like approach 被引量:7
20
作者 ZHANG Liang LU Yi +1 位作者 XU Shida FENG Han 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第4期816-822,共7页
To ensure multiple unmanned aerial vehicles (UAVs)reach stable formation quickly, a cooperative guidance law basedon the back-stepping-like approach is designed in this paper.Adopting the guidance mechanism of virtu... To ensure multiple unmanned aerial vehicles (UAVs)reach stable formation quickly, a cooperative guidance law basedon the back-stepping-like approach is designed in this paper.Adopting the guidance mechanism of virtue leader vehicle, thedynamic equation of tracking errors for each UAV is built. Thecommunication interactive relationships are described based ongraph theory, and the guidance law for formation reaching is ob-tained by the back-stepping-like approach. The formation stabilityis analyzed by constructing an appropriate Lyapunov function. Thesimulation results have shown that this guidance and control lawcan make each UAV converge to the trajectory of the virtue leaderultimately, and has the quicker rate of convergence and lowertracking error. 展开更多
关键词 unmanned aerial vehicle uav formation reaching guidance law stability.
下载PDF
上一页 1 2 203 下一页 到第
使用帮助 返回顶部