The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time perfor...The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time performance.However,the intricate and unpredictable pedestrian motion patterns lead the INS localization error to significantly diverge with time.This paper aims to enhance the accuracy of zero-velocity interval(ZVI)detection and reduce the heading and altitude drift of foot-mounted INS via deep learning and equation constraint of dual feet.Aiming at the observational noise problem of low-cost inertial sensors,we utilize a denoising autoencoder to automatically eliminate the inherent noise.Aiming at the problem that inaccurate detection of the ZVI detection results in obvious displacement error,we propose a sample-level ZVI detection algorithm based on the U-Net neural network,which effectively solves the problem of mislabeling caused by sliding windows.Aiming at the problem that Zero-Velocity Update(ZUPT)cannot suppress heading and altitude error,we propose a bipedal INS method based on the equation constraint and ellipsoid constraint,which uses foot-to-foot distance as a new observation to correct heading and altitude error.We conduct extensive and well-designed experiments to evaluate the performance of the proposed method.The experimental results indicate that the position error of our proposed method did not exceed 0.83% of the total traveled distance.展开更多
To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two diff...To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two different methods. Based on wavelet threshold denoising and functional coefficient autoregressive (FAR) model- ing, a combined data processing method is presented for MEMS inertial sensor, and GPS attitude information is also introduced to improve the estimation accuracy of MEMS inertial sensor errors. Then the positioning accuracy during GPS signal short outage is enhanced. To improve the positioning accuracy when a GPS signal is blocked for long time and solve the problem of the tra- ditional adaptive neuro-fuzzy inference system (ANFIS) method with poor dynamic adaptation and large calculation amount, a self-constructive ANFIS (SCANFIS) combined with the extended Kalman filter (EKF) is proposed for MEMS-INS errors modeling and predicting. Experimental road test results validate the effi- ciency of the proposed methods.展开更多
To improve the precision of inertial navigation system(INS) during long time operation,the rotation modulated technique(RMT) was employed to modulate the errorr of the inertial sensors into periodically varied sig...To improve the precision of inertial navigation system(INS) during long time operation,the rotation modulated technique(RMT) was employed to modulate the errorr of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of INS errors.The principle of the RMT was introduced and the error propagating functions were derived from the rotary navigation equation.Effects of the measurement error for the rotation angle of the platform on the system precision were analyzed.The simulation and experimental results show that the precision of INS was ① dramatically improved with the use of the RMT,and ② hardly reduced when the measurement error for the rotation angle was in arc-second level.The study results offer a theoretical basis for engineering design of rotary INS.展开更多
The dual-axis rotational inertial navigation system(INS)with dithered ring laser gyro(DRLG)is widely used in high precision navigation.The major inertial sensor errors such as drift errors of gyro and accelerometer ca...The dual-axis rotational inertial navigation system(INS)with dithered ring laser gyro(DRLG)is widely used in high precision navigation.The major inertial sensor errors such as drift errors of gyro and accelerometer can be averaged out,but the G-sensitive drifts of laser gyro cannot be averaged out by indexing.A 16-position rotational simulation experiment proves the G-sensitive drift will affect the long-term navigation error for the rotational INS quantitatively.The vibration coupling and asymmetric structure of the DRLG are the main errors.A new dithered mechanism and optimized DRLG is designed.The validity and efficiency of the optimized design are conformed by 1 g sinusoidal vibration experiments.An optimized inertial measurement unit(IMU)is formulated and measured experimentally.Laboratory and vehicle experimental results show that the divergence speed of longitude errors can be effectively slowed down in the optimized IMU.In long term independent navigation,the position accuracy of dual-axis rotational INS is improved close to 50%,and the G-sensitive drifts of laser gyro in the optimized IMU are less than 0.0002°/h.These results have important theoretical significance and practical value for improving the structural dynamic characteristics of DRLG INS,especially the highprecision inertial system.展开更多
In view of the characteristics of underwater navigation, the simulation platform of navigation system for autonomous underwater vehicle has been developed based on Windows platform. The system architecture, net commun...In view of the characteristics of underwater navigation, the simulation platform of navigation system for autonomous underwater vehicle has been developed based on Windows platform. The system architecture, net communication and the information flow are discussed. The methods of software realization and some key techniques of the Vehicle Computer and the Navigation Equipment Computer are introduced in particular. The software design of Terrain Matching Computer is introduced also. The simulation platform is verified and analyzed through simulation. The results show that the architecture of the platform is reasonable and reliable, and the mathematic models and simulation algorithms of sub-systems are also valid and practicable.展开更多
The integration of GNSS (Global Navigation Satellite System) and INS (Inertial Navigation System) using IMU (Inertial Measurement Unit) is now widely used for MMS (Mobile Mapping System) and navigation applica...The integration of GNSS (Global Navigation Satellite System) and INS (Inertial Navigation System) using IMU (Inertial Measurement Unit) is now widely used for MMS (Mobile Mapping System) and navigation applications to seamlessly determine position, velocity and attitude of the mobile platform. With low cost, small size, ligh weight and low power consumtion, the MEMS (Micro-Electro-Mechanical System) IMU and low cost GPS (Global Positioning System) receivers are now the trend in research and using for many applications. However, researchs in the literature indicated that the the performance of the low cost INS/GPS systems is still poor, particularly, in case of GNSS-noise environment. To overcome this problem, this research applies analytic contrains including non-holonomic constraint and zero velocity update in the data fusion engine such as Extended Kalman Filter to improve the performance of the system. The benefit of the proposed method will be demonstrated through experiments and data analysis.展开更多
This paper deals with the error analysis of a novel navigation algorithm that uses as input the sequence of images acquired from a moving camera and a Digital Terrain (or Elevation) Map (DTM/DEM). More specifically, i...This paper deals with the error analysis of a novel navigation algorithm that uses as input the sequence of images acquired from a moving camera and a Digital Terrain (or Elevation) Map (DTM/DEM). More specifically, it has been shown that the optical flow derived from two consecutive camera frames can be used in combination with a DTM to estimate the position, orientation and ego-motion parameters of the moving camera. As opposed to previous works, the proposed approach does not require an intermediate explicit reconstruction of the 3D world. In the present work the sensitivity of the algorithm outlined above is studied. The main sources for errors are identified to be the optical-flow evaluation and computation, the quality of the information about the terrain, the structure of the observed terrain and the trajectory of the camera. By assuming appropriate characterization of these error sources, a closed form expression for the uncertainty of the pose and motion of the camera is first developed and then the influence of these factors is confirmed using extensive numerical simulations. The main conclusion of this paper is to establish that the proposed navigation algorithm generates accurate estimates for reasonable scenarios and error sources, and thus can be effectively used as part of a navigation system of autonomous vehicles.展开更多
To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environme...To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.展开更多
Aiming at the problem of poor observability of measurement information in the loosely-coupled integration of the inertial navigation system (INS) and the wireless sensor network (WSN), this paper presents a tightl...Aiming at the problem of poor observability of measurement information in the loosely-coupled integration of the inertial navigation system (INS) and the wireless sensor network (WSN), this paper presents a tightly-coupled integration based on the Kalman filter (KF). When the WSN is available, the difference between the distances from the blind node(BN) to the reference nodes (RNs) measured by the INS and those measured by the WSN are used as measurement information for the KF due to its better observability and independence, which can effectively improve the accuracy of the KF. Simulations show that the proposed approach reduces the mean error of the position by about 50% compared with loosely-coupled integration, while the mean error of the velocity is a little higher than that of loosely-coupled integration.展开更多
In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the mem...In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively.展开更多
The interest for land navigation has increased for the recent years. With the advent of the Global Position System (GPS) we have now the ability to determine the absolute position anywhere on the globe. The problem is...The interest for land navigation has increased for the recent years. With the advent of the Global Position System (GPS) we have now the ability to determine the absolute position anywhere on the globe. The problem is that the GPS systems work well only in open environments with no overhead obstructions and they are subject to large unavoidable errors when the reception from some of the satellites are blocked. This occurs frequently in urban environments, forests and tunnels. GPS systems require at least four “visible” satellites to maintain a good position fix. In many situations in which higher level of accuracy is required, the navigation cannot be achieved by GPS alone. This paper discusses the design of a reliable multisensor fusion algorithm using GPS and Inertial Navigation System in order to decrease the implementation cost of such systems on land vehicles. The major contribution of this paper is in the definition of the possible developments and research axes in land navigation.展开更多
This paper proposes a technique that global positioning system(GPS)combines inertial navigation system(INS)by using unscented particle filter(UPF)to estimate the exact outdoor position.This system can make up for the ...This paper proposes a technique that global positioning system(GPS)combines inertial navigation system(INS)by using unscented particle filter(UPF)to estimate the exact outdoor position.This system can make up for the weak point on position estimation by the merits of GPS and INS.In general,extended Kalman filter(EKF)has been widely used in order to combine GPS with INS.However,UPF can get the position more accurately and correctly than EKF when it is applied to real-system included non-linear,irregular distribution errors.In this paper,the accuracy of UPF is proved through the simulation experiment,using the virtual-data needed for the test.展开更多
基金supported in part by National Key Research and Development Program under Grant No.2020YFB1708800China Postdoctoral Science Foundation under Grant No.2021M700385+5 种基金Guang Dong Basic and Applied Basic Research Foundation under Grant No.2021A1515110577Guangdong Key Research and Development Program under Grant No.2020B0101130007Central Guidance on Local Science and Technology Development Fund of Shanxi Province under Grant No.YDZJSX2022B019Fundamental Research Funds for Central Universities under Grant No.FRF-MP-20-37Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)under Grant No.FRF-IDRY-21-005National Natural Science Foundation of China under Grant No.62002026。
文摘The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time performance.However,the intricate and unpredictable pedestrian motion patterns lead the INS localization error to significantly diverge with time.This paper aims to enhance the accuracy of zero-velocity interval(ZVI)detection and reduce the heading and altitude drift of foot-mounted INS via deep learning and equation constraint of dual feet.Aiming at the observational noise problem of low-cost inertial sensors,we utilize a denoising autoencoder to automatically eliminate the inherent noise.Aiming at the problem that inaccurate detection of the ZVI detection results in obvious displacement error,we propose a sample-level ZVI detection algorithm based on the U-Net neural network,which effectively solves the problem of mislabeling caused by sliding windows.Aiming at the problem that Zero-Velocity Update(ZUPT)cannot suppress heading and altitude error,we propose a bipedal INS method based on the equation constraint and ellipsoid constraint,which uses foot-to-foot distance as a new observation to correct heading and altitude error.We conduct extensive and well-designed experiments to evaluate the performance of the proposed method.The experimental results indicate that the position error of our proposed method did not exceed 0.83% of the total traveled distance.
基金supported by the National Natural Science Foundation of China (60902055)
文摘To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two different methods. Based on wavelet threshold denoising and functional coefficient autoregressive (FAR) model- ing, a combined data processing method is presented for MEMS inertial sensor, and GPS attitude information is also introduced to improve the estimation accuracy of MEMS inertial sensor errors. Then the positioning accuracy during GPS signal short outage is enhanced. To improve the positioning accuracy when a GPS signal is blocked for long time and solve the problem of the tra- ditional adaptive neuro-fuzzy inference system (ANFIS) method with poor dynamic adaptation and large calculation amount, a self-constructive ANFIS (SCANFIS) combined with the extended Kalman filter (EKF) is proposed for MEMS-INS errors modeling and predicting. Experimental road test results validate the effi- ciency of the proposed methods.
基金Sponsored by the National Natural Science Foundation of China(60604011)
文摘To improve the precision of inertial navigation system(INS) during long time operation,the rotation modulated technique(RMT) was employed to modulate the errorr of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of INS errors.The principle of the RMT was introduced and the error propagating functions were derived from the rotary navigation equation.Effects of the measurement error for the rotation angle of the platform on the system precision were analyzed.The simulation and experimental results show that the precision of INS was ① dramatically improved with the use of the RMT,and ② hardly reduced when the measurement error for the rotation angle was in arc-second level.The study results offer a theoretical basis for engineering design of rotary INS.
基金supported by the National Natural Science Foundation of China(61503399).
文摘The dual-axis rotational inertial navigation system(INS)with dithered ring laser gyro(DRLG)is widely used in high precision navigation.The major inertial sensor errors such as drift errors of gyro and accelerometer can be averaged out,but the G-sensitive drifts of laser gyro cannot be averaged out by indexing.A 16-position rotational simulation experiment proves the G-sensitive drift will affect the long-term navigation error for the rotational INS quantitatively.The vibration coupling and asymmetric structure of the DRLG are the main errors.A new dithered mechanism and optimized DRLG is designed.The validity and efficiency of the optimized design are conformed by 1 g sinusoidal vibration experiments.An optimized inertial measurement unit(IMU)is formulated and measured experimentally.Laboratory and vehicle experimental results show that the divergence speed of longitude errors can be effectively slowed down in the optimized IMU.In long term independent navigation,the position accuracy of dual-axis rotational INS is improved close to 50%,and the G-sensitive drifts of laser gyro in the optimized IMU are less than 0.0002°/h.These results have important theoretical significance and practical value for improving the structural dynamic characteristics of DRLG INS,especially the highprecision inertial system.
文摘In view of the characteristics of underwater navigation, the simulation platform of navigation system for autonomous underwater vehicle has been developed based on Windows platform. The system architecture, net communication and the information flow are discussed. The methods of software realization and some key techniques of the Vehicle Computer and the Navigation Equipment Computer are introduced in particular. The software design of Terrain Matching Computer is introduced also. The simulation platform is verified and analyzed through simulation. The results show that the architecture of the platform is reasonable and reliable, and the mathematic models and simulation algorithms of sub-systems are also valid and practicable.
文摘The integration of GNSS (Global Navigation Satellite System) and INS (Inertial Navigation System) using IMU (Inertial Measurement Unit) is now widely used for MMS (Mobile Mapping System) and navigation applications to seamlessly determine position, velocity and attitude of the mobile platform. With low cost, small size, ligh weight and low power consumtion, the MEMS (Micro-Electro-Mechanical System) IMU and low cost GPS (Global Positioning System) receivers are now the trend in research and using for many applications. However, researchs in the literature indicated that the the performance of the low cost INS/GPS systems is still poor, particularly, in case of GNSS-noise environment. To overcome this problem, this research applies analytic contrains including non-holonomic constraint and zero velocity update in the data fusion engine such as Extended Kalman Filter to improve the performance of the system. The benefit of the proposed method will be demonstrated through experiments and data analysis.
文摘This paper deals with the error analysis of a novel navigation algorithm that uses as input the sequence of images acquired from a moving camera and a Digital Terrain (or Elevation) Map (DTM/DEM). More specifically, it has been shown that the optical flow derived from two consecutive camera frames can be used in combination with a DTM to estimate the position, orientation and ego-motion parameters of the moving camera. As opposed to previous works, the proposed approach does not require an intermediate explicit reconstruction of the 3D world. In the present work the sensitivity of the algorithm outlined above is studied. The main sources for errors are identified to be the optical-flow evaluation and computation, the quality of the information about the terrain, the structure of the observed terrain and the trajectory of the camera. By assuming appropriate characterization of these error sources, a closed form expression for the uncertainty of the pose and motion of the camera is first developed and then the influence of these factors is confirmed using extensive numerical simulations. The main conclusion of this paper is to establish that the proposed navigation algorithm generates accurate estimates for reasonable scenarios and error sources, and thus can be effectively used as part of a navigation system of autonomous vehicles.
基金Pre-Research Program of General Armament Department during the11th Five-Year Plan Period (No51309020503)the National Defense Basic Research Program of China (973Program)(No973-61334)+1 种基金the National Natural Science Foundation of China(No50575042)Specialized Research Fund for the Doctoral Program of Higher Education (No20050286026)
文摘To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.
基金The National Basic Research Program of China(973 Program)(No.2009CB724002)the National Natural Science Foundation of China(No.50975049)+3 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110092110039)the Aviation Science Foundation(No.20090869008)the Six Peak Talents Foundation in Jiangsu Province(No.2008143)Program of Scientific Innovation Research of College Graduate in Jiangsu Province(No.CXLX_0101)
文摘Aiming at the problem of poor observability of measurement information in the loosely-coupled integration of the inertial navigation system (INS) and the wireless sensor network (WSN), this paper presents a tightly-coupled integration based on the Kalman filter (KF). When the WSN is available, the difference between the distances from the blind node(BN) to the reference nodes (RNs) measured by the INS and those measured by the WSN are used as measurement information for the KF due to its better observability and independence, which can effectively improve the accuracy of the KF. Simulations show that the proposed approach reduces the mean error of the position by about 50% compared with loosely-coupled integration, while the mean error of the velocity is a little higher than that of loosely-coupled integration.
基金supported in part by the National Natural Science Foundation of China(No.41876222)。
文摘In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively.
文摘The interest for land navigation has increased for the recent years. With the advent of the Global Position System (GPS) we have now the ability to determine the absolute position anywhere on the globe. The problem is that the GPS systems work well only in open environments with no overhead obstructions and they are subject to large unavoidable errors when the reception from some of the satellites are blocked. This occurs frequently in urban environments, forests and tunnels. GPS systems require at least four “visible” satellites to maintain a good position fix. In many situations in which higher level of accuracy is required, the navigation cannot be achieved by GPS alone. This paper discusses the design of a reliable multisensor fusion algorithm using GPS and Inertial Navigation System in order to decrease the implementation cost of such systems on land vehicles. The major contribution of this paper is in the definition of the possible developments and research axes in land navigation.
基金The MKE(the Ministry of Knowledge Economy),Korea,under the ITRC(Information Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency) (NIPA-2012-H0301-12-2006)
文摘This paper proposes a technique that global positioning system(GPS)combines inertial navigation system(INS)by using unscented particle filter(UPF)to estimate the exact outdoor position.This system can make up for the weak point on position estimation by the merits of GPS and INS.In general,extended Kalman filter(EKF)has been widely used in order to combine GPS with INS.However,UPF can get the position more accurately and correctly than EKF when it is applied to real-system included non-linear,irregular distribution errors.In this paper,the accuracy of UPF is proved through the simulation experiment,using the virtual-data needed for the test.