期刊文献+
共找到4,254篇文章
< 1 2 213 >
每页显示 20 50 100
Optimization Control of Multi-Mode Coupling All-Wheel Drive System for Hybrid Vehicle
1
作者 Lipeng Zhang Zijian Wang +1 位作者 Liandong Wang Changan Ren 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期340-355,共16页
The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy... The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy of hybrid vehicles becomes an issue.A unique multi-mode coupling(MMC)AWD hybrid system is presented to realize the distributed and centralized driving of the front and rear axles to achieve vectored distribution and full utilization of the system power between the axles of vehicles.Based on the parameters of the benchmarking model of a hybrid vehicle,the best model-predictive control-based energy management strategy is proposed.First,the drive system model was built after the analysis of the MMC-AWD’s drive modes.Next,three fundamental strategies were established to address power distribution adjustment and battery SOC maintenance when the SOC changed,which was followed by the design of a road driving force observer.Then,the energy consumption rate in the average time domain was processed before designing the minimum fuel consumption controller based on the equivalent fuel consumption coefficient.Finally,the advantage of the MMC-AWD was confirmed by comparison with the dynamic performance and economy of the BYD Song PLUS DMI-AWD.The findings indicate that,in comparison to the comparative hybrid system at road adhesion coefficients of 0.8 and 0.6,the MMC-AWD’s capacity to accelerate increases by 5.26%and 7.92%,respectively.When the road adhesion coefficient is 0.8,0.6,and 0.4,the maximum climbing ability increases by 14.22%,12.88%,and 4.55%,respectively.As a result,the dynamic performance is greatly enhanced,and the fuel savings rate per 100 km of mileage reaches 12.06%,which is also very economical.The proposed control strategies for the new hybrid AWD vehicle can optimize the power and economy simultaneously. 展开更多
关键词 Hybrid vehicle All-wheel drive Multi-mode coupling Energy management Model predictive control
下载PDF
Analysis for Effects of Temperature Rise of PV Modules upon Driving Distance of Vehicle Integrated Photovoltaic Electric Vehicles
2
作者 Masafumi Yamaguchi Yasuyuki Ota +18 位作者 Taizo Masuda Christian Thiel Anastasios Tsakalidis Arnulf Jaeger-Waldau Kenji Araki Kensuke Nishioka Tatsuya Takamoto Takashi Nakado Kazumi Yamada Tsutomu Tanimoto Yosuke Tomita Yusuke Zushi Kenichi Okumura Takashi Mabuchi Akinori Satou Kyotaro Nakamura Ryo Ozaki Nobuaki Kojima Yoshio Ohshita 《Energy and Power Engineering》 2024年第4期131-150,共20页
The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although ... The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV. 展开更多
关键词 vehicle Integrated Photovoltaics (VIPV) VIPV-Powered Electric vehicles driving Distance PV Modules Solar Irradiation Temperature Rise Radiative Cooling
下载PDF
Research on X-by-Wire Chassis Technology for Intelligent Driving of New Energy Vehicles
3
作者 Honghong Xiao 《Journal of Electronic Research and Application》 2024年第2期146-150,共5页
As China’s economy develops,new energy technologies and intelligent driving have become a trend in the automobile industry.The development of new energy vehicles has accelerated,with X-by-wire chassis technology beco... As China’s economy develops,new energy technologies and intelligent driving have become a trend in the automobile industry.The development of new energy vehicles has accelerated,with X-by-wire chassis technology becoming the core technology for intelligent driving.This technology includes steer-,brake-,shift-,and throttle-by-wire systems.It is not only the key technology for new energy vehicles but also an important support for promoting their sustainable development.This article presents an in-depth study on X-by-wire chassis technology in new energy vehicles and its basic working principle. 展开更多
关键词 New energy vehicles Intelligent driving X-by-wire chassis technology
下载PDF
Safe Motion Planning and Control Framework for Automated Vehicles with Zonotopic TRMPC
4
作者 Hao Zheng Yinong Li +1 位作者 Ling Zheng Ehsan Hashemi 《Engineering》 SCIE EI CAS CSCD 2024年第2期146-159,共14页
Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal ... Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal trajectories that are individually optimized by the AV's planning layer.To address this issue,this study proposes a safe motion planning and control(SMPAC)framework for AVs.For the control layer,a dynamic model including multi-dimensional uncertainties is established.A zonotopic tube-based robust model predictive control scheme is proposed to constrain the uncertain system in a bounded minimum robust positive invariant set.A flexible tube with varying cross-sections is constructed to reduce the controller conservatism.For the planning layer,a concept of safety sets,representing the geometric boundaries of the ego vehicle and obstacles under uncertainties,is proposed.The safety sets provide the basis for the subsequent evaluation and ranking of the generated trajectories.An efficient collision avoidance algorithm decides the desired trajectory through the intersection detection of the safety sets between the ego vehicle and obstacles.A numerical simulation and hardware-in-the-loop experiment validate the effectiveness and real-time performance of the SMPAC.The result of two driving scenarios indicates that the SMPAC can guarantee the safety of automated driving under multi-dimensional uncertainties. 展开更多
关键词 Automated vehicles Automated driving Motion planning Motion control Tube MPC ZONOTOPE
下载PDF
Research on the Mechanism of Multi-Sensor Fusion Configuration Based on the Optimal Principle of the Vehicle
5
作者 Zhao Binggen Zeng Dong +2 位作者 Lin Haoyu Qiu Xubo Hu Pijie 《汽车技术》 CSCD 北大核心 2024年第10期28-37,共10页
In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And th... In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And then,combining a specific set of parameters,the NSGA-II algorithm is used to solve the multi-objective model established in this paper,and a Pareto front containing 24 typical configuration schemes is extracted after considering empirical constraints.Finally,using the decision preference method proposed in this paper that combines subjective and objective factors,decision scores are calculated and ranked for various configuration schemes from both cost and performance preferences.The research results indicate that the multi-objective optimization model established in this paper can screen and optimize various configuration schemes from the optimal principle of the vehicle,and the optimized configuration schemes can be quantitatively ranked to obtain the decision results for the vehicle under different preference tendencies. 展开更多
关键词 Multi-sensor fusion Intelligent driving Multi-objective optimization vehicle optimization
下载PDF
A Workable Solution for Reducing the Large Number of Vehicle and Pedestrian Accidents Occurring on a Yellow Light
6
作者 Pranav Gupta Silki Arora 《Journal of Transportation Technologies》 2024年第1期82-87,共6页
Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada... Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs. 展开更多
关键词 Traffic Accidents Yellow Light Traffic Light Signals INTERSECTION Crashes Collision Traffic Fatalities Traffic Injuries vehicles SAFETY Speed Limit driving Pedestrians Bicyclists MOTORCYCLISTS Caution Line Yellow Light Dilemma Left Hand Turn on Yellow Distance Smart Road Technology Signs Signage Autonomous vehicles AVs Road Safety IoT Internet of Things Infrastructure Accident Reduction driving Habits Stop Line Red Light Jumping Pedestrian Safety Caution Light Stopping at Intersection Safety at Intersections
下载PDF
Driving risk assessment under the connected vehicle environment:a CNN-LSTM modeling approach 被引量:1
7
作者 Yin Zheng Lei Han +1 位作者 Jiqing Yu Rongjie Yu 《Digital Transportation and Safety》 2023年第3期211-219,共9页
Connected vehicle(CV)is regarded as a typical feature of the future road transportation system.One core benefit of promoting CV is to improve traffic safety,and to achieve that,accurate driving risk assessment under V... Connected vehicle(CV)is regarded as a typical feature of the future road transportation system.One core benefit of promoting CV is to improve traffic safety,and to achieve that,accurate driving risk assessment under Vehicle-to-Vehicle(V2V)communications is critical.There are two main differences concluded by comparing driving risk assessment under the CV environment with traditional ones:(1)the CV environment provides high-resolution and multi-dimensional data,e.g.,vehicle trajectory data,(2)Rare existing studies can comprehensively address the heterogeneity of the vehicle operating environment,e.g.,the multiple interacting objects and the time-series variability.Hence,this study proposes a driving risk assessment framework under the CV environment.Specifically,first,a set of time-series top views was proposed to describe the CV environment data,expressing the detailed information on the vehicles surrounding the subject vehicle.Then,a hybrid CNN-LSTM model was established with the CNN component extracting the spatial interaction with multiple interacting vehicles and the LSTM component solving the time-series variability of the driving environment.It is proved that this model can reach an AUC of 0.997,outperforming the existing machine learning algorithms.This study contributes to the improvement of driving risk assessment under the CV environment. 展开更多
关键词 Connected vehicle Connected vehicle environment driving risk assessment CNN-LSTM Traffic safety
下载PDF
Driving Range Parametric Analysis of Electric Vehicles Driven by Interior Permanent Magnet Motors Considering Driving Cycles 被引量:4
8
作者 Le Tian Lijian Wu +1 位作者 Xiaoyan Huang Youtong Fang 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第4期377-381,共5页
This paper presents parametric analysis of driving range of electric vehicles driven by V-type interior permanent magnet motors aiming at maximum driving range,i.e.,minimal total energy consumption of the motors over ... This paper presents parametric analysis of driving range of electric vehicles driven by V-type interior permanent magnet motors aiming at maximum driving range,i.e.,minimal total energy consumption of the motors over a driving cycle.Influence of design parameters including tooth width,slot depth,split ratio(the ratio of inner diameter to outer diameter of the stator),and V-type magnet angle on the energy consumption of the motors and driving range of electric vehicles over a driving cycle is investigated in detail.The investigation is carried out for two typical driving cycles with different characteristics to represent different conditions:One is high-speed,low-torque cycle-Highway Fuel Economy Test and the other is low-speed,high-torque cycle-Artemis Urban Driving Cycle.It shows that for both driving cycles,the same parameters may have different influence on the energy consumption of the motors,as well as driving range of electric vehicles. 展开更多
关键词 driving cycle driving range electrical vehicle interior permanent magnet motor.
下载PDF
Large-Scale Vehicle Platooning:Advances and Challenges in Scheduling and Planning Techniques 被引量:1
9
作者 Jing Hou Guang Chen +5 位作者 Jin Huang Yingjun Qiao Lu Xiong Fuxi Wen Alois Knoll Changjun Jiang 《Engineering》 SCIE EI CAS CSCD 2023年第9期26-48,共23页
Through vehicle-to-vehicle(V2V)communication,autonomizing a vehicle platoon can significantly reduce the distance between vehicles,thereby reducing air resistance and improving road traffic efficiency.The gradual matu... Through vehicle-to-vehicle(V2V)communication,autonomizing a vehicle platoon can significantly reduce the distance between vehicles,thereby reducing air resistance and improving road traffic efficiency.The gradual maturation of platoon control technology is enabling vehicle platoons to achieve basic driving functions,thereby permitting large-scale vehicle platoon scheduling and planning,which is essential for industrialized platoon applications and generates significant economic benefits.Scheduling and planning are required in many aspects of vehicle platoon operation;here,we outline the advantages and challenges of a number of the most important applications,including platoon formation scheduling,lane-change planning,passing traffic light scheduling,and vehicle resource allocation.This paper’s primary objective is to integrate current independent platoon scheduling and planning techniques into an integrated architecture to meet the demands of large-scale platoon applications.To this end,we first summarize the general techniques of vehicle platoon scheduling and planning,then list the primary scenarios for scheduling and planning technique application,and finally discuss current challenges and future development trends in platoon scheduling and planning.We hope that this paper can encourage related platoon researchers to conduct more systematic research and integrate multiple platoon scheduling and planning technologies and applications. 展开更多
关键词 Autonomous vehicle platoon Autonomous driving Connected and automated vehicles Scheduling and planning techniques
下载PDF
Study on Steering Control Strategy for High-Speed Tracked Vehicle with Hydrostatic Drive 被引量:3
10
作者 杨磊 马彪 李和言 《Journal of Beijing Institute of Technology》 EI CAS 2010年第2期158-164,共7页
Steering control strategy for high-speed tracked vehicle with hydrostatic drive is designed based on analyzing the fundamental steering theories of the hydrostatic drive tracked vehicle. The strategy is completed by t... Steering control strategy for high-speed tracked vehicle with hydrostatic drive is designed based on analyzing the fundamental steering theories of the hydrostatic drive tracked vehicle. The strategy is completed by the cooperation between integrated steering control unit and pump & motor displacement controller. The steering simulation is conducted by using Simulink of Matlab. It is indicated that this steering control strategy can reduce the average vehicle speed automatically to achieve the driver's expected steering radius exactly in the case of en- suring not exceeding the system pressure threshold and no sideslip. 展开更多
关键词 hydrostatic drive tracked vehicle stepless steering control strategy speed regulation
下载PDF
Cloud Computing Based Optimal Driving for a Parallel Hybrid Electric Vehicle 被引量:2
11
作者 Jie Fan Yuan Zou +1 位作者 Zehui Kong Ludger Heide 《Journal of Beijing Institute of Technology》 EI CAS 2019年第1期155-161,共7页
A cloud computing based optimal driving method is proposed and its feasibility is validated through a real-world scenario simulation.Based on principles of vehicle dynamics,the driving optimization problem has been fo... A cloud computing based optimal driving method is proposed and its feasibility is validated through a real-world scenario simulation.Based on principles of vehicle dynamics,the driving optimization problem has been formulated into an optimal control problem constrained by traffic rules,directed at achieving lower equivalent fuel consumption and shorter travel time.In order to conveniently specify the constraints and facilitate the application of the dynamic programming(DP)algorithm,the driving optimization problem is transformed into spatial domain and discretized properly.Considering the heavy computational costs of the DP algorithm,a cloud computing based platform structure is proposed to solve the optimal driving problem in real-time.A case study is simulated based on a real-world traffic scenario in Matlab.Simulation results demonstrate that the cloud computing framework is promising toward realizing the real-time energy management for hybrid electric vehicles. 展开更多
关键词 hybrid ELECTRIC vehicle CLOUD COMPUTING OPTIMAL driving energy management
下载PDF
Direct Yaw Moment Control for Distributed Drive Electric Vehicle Handling Performance Improvement 被引量:30
12
作者 YU Zhuoping LENG Bo +2 位作者 XIONG Lu FENG Yuan SHI Fenmiao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期486-497,共12页
For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. A... For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved. 展开更多
关键词 direct yaw moment control distributed drive electric vehicle handling performance improvement state feedback control
下载PDF
A Probabilistic Architecture of Long-Term Vehicle Trajectory Prediction for Autonomous Driving 被引量:4
13
作者 Jinxin Liu Yugong Luo +3 位作者 Zhihua Zhong Keqiang Li Heye Huang Hui Xiong 《Engineering》 SCIE EI CAS 2022年第12期228-239,共12页
In mixed and dynamic traffic environments,accurate long-term trajectory forecasting of surrounding vehicles is one of the indispensable preconditions for autonomous vehicles to accomplish reasonable behavioral decisio... In mixed and dynamic traffic environments,accurate long-term trajectory forecasting of surrounding vehicles is one of the indispensable preconditions for autonomous vehicles to accomplish reasonable behavioral decisions and guarantee driving safety.In this paper,we propose an integrated probabilistic architecture for long-term vehicle trajectory prediction,which consists of a driving inference model(DIM)and a trajectory prediction model(TPM).The DIM is designed and employed to accurately infer the potential driving intention based on a dynamic Bayesian network.The proposed DIM incorporates the basic traffic rules and multivariate vehicle motion information.To further improve the prediction accuracy and realize uncertainty estimation,we develop a Gaussian process-based TPM,considering both the short-term prediction results of the vehicle model and the driving motion characteristics.Afterward,the effectiveness of our novel approach is demonstrated by conducting experiments on a public naturalistic driving dataset under lane-changing scenarios.The superior performance on the task of long-term trajectory prediction is presented and verified by comparing with other advanced methods. 展开更多
关键词 Autonomous driving Dynamic Bayesian network driving intention recognition Gaussian process vehicle trajectory prediction
下载PDF
Human-Like Decision-Making of Autonomous Vehicles in Dynamic Traffic Scenarios
14
作者 Tangyike Zhang Junxiang Zhan +2 位作者 Jiamin Shi Jingmin Xin Nanning Zheng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第10期1905-1917,共13页
With the maturation of autonomous driving technology, the use of autonomous vehicles in a socially acceptable manner has become a growing demand of the public. Human-like autonomous driving is expected due to the impa... With the maturation of autonomous driving technology, the use of autonomous vehicles in a socially acceptable manner has become a growing demand of the public. Human-like autonomous driving is expected due to the impact of the differences between autonomous vehicles and human drivers on safety.Although human-like decision-making has become a research hotspot, a unified theory has not yet been formed, and there are significant differences in the implementation and performance of existing methods. This paper provides a comprehensive overview of human-like decision-making for autonomous vehicles. The following issues are discussed: 1) The intelligence level of most autonomous driving decision-making algorithms;2) The driving datasets and simulation platforms for testing and verifying human-like decision-making;3) The evaluation metrics of human-likeness;personalized driving;the application of decisionmaking in real traffic scenarios;and 4) The potential research direction of human-like driving. These research results are significant for creating interpretable human-like driving models and applying them in dynamic traffic scenarios. In the future, the combination of intuitive logical reasoning and hierarchical structure will be an important topic for further research. It is expected to meet the needs of human-like driving. 展开更多
关键词 Autonomous vehicles DECISION-MAKING driving behavior human-like driving
下载PDF
Four Wheel Independent Drive Electric Vehicle Lateral Stability Control Strategy 被引量:8
15
作者 Yantao Tian Xuanhao Cao +1 位作者 Xiaoyu Wang Yanbo Zhao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第6期1542-1554,共13页
In this paper,a kind of lateral stability control strategy is put forward about the four wheel independent drive electric vehicle.The design of control system adopts hierarchical structure.Unlike the previous control ... In this paper,a kind of lateral stability control strategy is put forward about the four wheel independent drive electric vehicle.The design of control system adopts hierarchical structure.Unlike the previous control strategy,this paper introduces a method which is the combination of sliding mode control and optimal allocation algorithm.According to the driver’s operation commands(steering angle and speed),the steady state responses of the sideslip angle and yaw rate are obtained.Based on this,the reference model is built.Upper controller adopts the sliding mode control principle to obtain the desired yawing moment demand.Lower controller is designed to satisfy the desired yawing moment demand by optimal allocation of the tire longitudinal forces.Firstly,the optimization goal is built to minimize the actuator cost.Secondly,the weighted least-square method is used to design the tire longitudinal forces optimization distribution strategy under the constraint conditions of actuator and the friction oval.Beyond that,when the optimal allocation algorithm is not applied,a method of axial load ratio distribution is adopted.Finally,Car Sim associated with Simulink simulation experiments are designed under the conditions of different velocities and different pavements.The simulation results show that the control strategy designed in this paper has a good following effect comparing with the reference model and the sideslip angle is controlled within a small rang at the same time.Beyond that,based on the optimal distribution mode,the electromagnetic torque phase of each wheel can follow the trend of the vertical force of the tire,which shows the effectiveness of the optimal distribution algorithm. 展开更多
关键词 Four wheel drive electric vehicle least square method moment distribution sliding mode controller stability control
下载PDF
Estimation of Vehicle Speed Based on Wheel Speeds from ASR System in Four-Wheel Drive Vehicles 被引量:2
16
作者 齐志权 马岳峰 +1 位作者 刘昭度 李红军 《Journal of Beijing Institute of Technology》 EI CAS 2010年第2期153-157,共5页
Three major methods currently in the use of determining vehicle speed based on wheel speeds, the minimum wheel speed, minimum wheel speed corrected by slope method and the Kalman filter method, are analyzed, with meri... Three major methods currently in the use of determining vehicle speed based on wheel speeds, the minimum wheel speed, minimum wheel speed corrected by slope method and the Kalman filter method, are analyzed, with merits and defects of each approach stated. Through simulations, the Kalman filter method based on minimum wheel speed shows improved accuracy, in addition to better adaptivity to vehicle reference speed. It also can be used to acceleration ship regulation (ASR) in part-time four-wheel drive vehicles. 展开更多
关键词 four-wheel drive wheel speed acceleration slip regulation estimation of vehicle speed
下载PDF
Combined Estimation of Vehicle Dynamic State and Inertial Parameter for Electric Vehicles Based on Dual Central Difference Kalman Filter Method
17
作者 Xianjian Jin Junpeng Yang +3 位作者 Liwei Xu Chongfeng Wei Zhaoran Wang Guodong Yin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期339-354,共16页
Distributed drive electric vehicles(DDEVs)possess great advantages in the viewpoint of fuel consumption,environment protection and traffic mobility.Whereas the effects of inertial parameter variation in DDEV control s... Distributed drive electric vehicles(DDEVs)possess great advantages in the viewpoint of fuel consumption,environment protection and traffic mobility.Whereas the effects of inertial parameter variation in DDEV control system become much more pronounced due to the drastic reduction of vehicle weights and body size,and inertial parameter has seldom been tackled and systematically estimated.This paper presents a dual central difference Kalman filter(DCDKF)where two Kalman filters run in parallel to simultaneously estimate vehicle different dynamic states and inertial parameters,such as vehicle sideslip angle,vehicle mass,vehicle yaw moment of inertia,the distance from the front axle to centre of gravity.The proposed estimation method only integrates and utilizes real-time measurements of hub torque information and other in-vehicle sensors from standard DDEVs.The four-wheel nonlinear vehicle dynamics estimation model considering payload variations,Pacejka tire model,wheel and motor dynamics model is developed,the observability of the DCDKF observer is analysed and derived via Lie derivative and differential geometry theory.To address system nonlinearities in vehicle dynamics estimation,the DCDKF and dual extended Kalman filter(DEKF)are also investigated and compared.Simulation with various maneuvers are carried out to verify the effectiveness of the proposed method using Matlab/Simulink-CarsimR.The results show that the proposed DCDKF method can effectively estimate vehicle dynamic states and inertial parameters despite the existence of payload variations and variable driving conditions.This research provides a boot-strapping procedure which can performs optimal estimation to estimate simultaneously vehicle system state and inertial parameter with high accuracy and real-time ability. 展开更多
关键词 Distributed drive Electric vehicle State observation Inertial parameter Dual central difference Kalman filter
下载PDF
Track Tension Analysis of Four-Wheel Drive Tracked Vehicles 被引量:1
18
作者 Zhifu Wang Bin Liu Li Zhai 《Journal of Beijing Institute of Technology》 EI CAS 2017年第1期45-49,共5页
The distribution of track tension on track link is complex when the tracked vehicles run at a high speed.A multi-drive track link structure,which changes the traditional induction wheel into the driving wheel was prop... The distribution of track tension on track link is complex when the tracked vehicles run at a high speed.A multi-drive track link structure,which changes the traditional induction wheel into the driving wheel was proposed.The mathematical model of the system was established and the distribution of track tension was studied.The combined simulation model of RecurDyn and Simulink of the structure with multi-drive track was established.The simulation results show that our proposed structure has more uniform tension distribution than traditional structures,especially under the high speed condition.The maximum tension can be reduced by 28 kN-36 kN and the transmission efficiency can be improved by10%-16% under high speed condition with this new structure. 展开更多
关键词 tracked vehicle four-wheel drive track tension
下载PDF
Nonlinear Derivative and Integral Sliding Control for Tracked Vehicle Steering with Hydrostatic Drive 被引量:2
19
作者 Changsong Zheng Yichun Chen Ran Jia 《Journal of Beijing Institute of Technology》 EI CAS 2020年第3期283-293,共11页
In the steering process of tracked vehicle with hydrostatic drive,the motion and resistance states of the vehicle are always of uncertain and nonlinear characteristics,and these states may undergoe large-scale changes... In the steering process of tracked vehicle with hydrostatic drive,the motion and resistance states of the vehicle are always of uncertain and nonlinear characteristics,and these states may undergoe large-scale changes.Therefore,it is significant to enhance the steering stability of tracked vehicle with hydrostatic drive to meet the need of future battlefield.In this paper,a sliding mode control algorithm is proposed and applied to achieve desired yaw rates.The speed controller and the yaw rate controller are designed through the kinematics and dynamics analysis.In addition,the nonlinear derivative and integral sliding mode control algorithm is designed,which is supposed to efficiently reduce the integration saturation and the disturbances from the unsmooth road surfaces through a conditional integrator approach.Moreover,it improves the response speed of the system and reduces the chattering by the derivative controller.The hydrostatic tracked vehicle module is modeled with a multi-body dynamic software RecurDyn and the steering control strategy module is modeled by MATLAB/Simulink.The co-simulation results of the whole model show that the control strategy can improve the vehicle steering response speed and also ensure a smooth control output with small chattering and strong robustness. 展开更多
关键词 tracked vehicle hydrostatic drive steer control nonlinear derivative and integral sliding mode control
下载PDF
A model-based driving cycle test procedure of electric vehicle batteries 被引量:2
20
作者 李勇 Wang Lifang +1 位作者 Liao Chenglin Wang Liye 《High Technology Letters》 EI CAS 2014年第3期308-314,共7页
The battery test methods are the key issues to investigate the energy-storage characteristics and dynamic characteristics of electric vehicle(EV) batteries.In this paper,the research advances of existing battery test ... The battery test methods are the key issues to investigate the energy-storage characteristics and dynamic characteristics of electric vehicle(EV) batteries.In this paper,the research advances of existing battery test methods as well as driving cycles are reviewed.An electric vehicle model that consists of EV dynamics model,battery model and electric motor model is built.The dynamic characteristics of the battery in frequency domain are analyzed.Based on the EV model and the frequency domain characteristics of the battery,a driving cycle test procedure of EV battery is proposed.The battery test procedure is able to reflect the real-world characteristics of EV batteries,and can be used as a universal EV battery test method. 展开更多
关键词 battery test methods lithium-ion battery electric vehicle (EV) model driving cycles
下载PDF
上一页 1 2 213 下一页 到第
使用帮助 返回顶部