Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface ...Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.展开更多
Airborne light detection and ranging( LIDAR) has revolutionized conventional methods for digital terrain models( DTMs) acquisition. Ground filtering for airborne LIDAR is one of the core steps taken to obtain a high q...Airborne light detection and ranging( LIDAR) has revolutionized conventional methods for digital terrain models( DTMs) acquisition. Ground filtering for airborne LIDAR is one of the core steps taken to obtain a high quality DTM. This paper presents a segments-based progressive TIN( triangulated irregular network) densification( SPTD) filter that can automatically separate ground points from non-ground points. The SPTD method is composed of two key steps: point cloud segmentation and clustering by iterative judgement. The clustering method uses the dual distance to obtain a set of seed points as a coarse spatial clustering process. Then the rest of the valid point clouds are classified iteratively. Finally,the datasets provided by ISPRS are utilized to test the filtering performance.In comparison with the commercial software Terra Solid,the experimental results show that the SPTD method in this paper can avoid single threshold restrictions. The expected accuracy of ground point determination is capable of producing reliable DTMs in the discontinuous areas.展开更多
机载激光雷达(LiDAR)点云电力线提取过程中存在杆塔形状复杂、噪声影响大等问题,导致电力线点云提取精度低,本文提出一种基于点云分块处理、格网划分的曲面拟合滤波、自适应密度聚类算法的电力线点云提取与重建方法。首先,根据电力线走...机载激光雷达(LiDAR)点云电力线提取过程中存在杆塔形状复杂、噪声影响大等问题,导致电力线点云提取精度低,本文提出一种基于点云分块处理、格网划分的曲面拟合滤波、自适应密度聚类算法的电力线点云提取与重建方法。首先,根据电力线走向,对整体点云进行分块处理;其次,在曲面拟合算法的基础上,引入格网划分思想,提出一种改进曲面拟合滤波算法并进行点云滤波;最后,通过给出自适应密度聚类解决方案精确提取电力线点云。借助点云库(PCL)、libLAS库与Visual Studio 2017 C++开发环境实现本文算法,基于实测点云数据对本文方法进行测试与精度评定。结果表明:电力线提取精确率为97.82%、召回率为99.76%、F1值为98.78%,一次便可实现电力线的成功提取,在保证提取精度的同时提升了提取效率,本文研究能够为电力线智能巡检提供良好的工程应用价值。展开更多
针对车载激光雷达(light detection and ranging,LiDAR)点云数据的不完整性问题,提出一种车载LiDAR点云数据分割以及基于分割后点云数据的半自动化建模方法。首先对点云数据进行标准格式转换及稀化;然后以不同地物的属性和几何特征为分...针对车载激光雷达(light detection and ranging,LiDAR)点云数据的不完整性问题,提出一种车载LiDAR点云数据分割以及基于分割后点云数据的半自动化建模方法。首先对点云数据进行标准格式转换及稀化;然后以不同地物的属性和几何特征为分割条件,分别建立道路、建筑物、树和路灯等附属设施的三维模型,并利用车载以及航空图像的纹理信息辅助建筑物的立面和顶面三维建模;最后以真实街景为实验区,基于拓普康IP-S2车载LiDAR点云数据,完成该街景的分割与建模。实验结果表明,该文提出的点云数据分割与街景地物重建方法比较简单,可实现道路和建筑物的半自动化分割;利用成熟的建模软件和方法,实现了建模的完整性和较强的可靠性。展开更多
在机载LIDAR(Light Detect And Ranging)系统中,针对正射影像镶嵌线优化需求,提出一种双惩罚系数的改进A*算法,通过点云生成高精度DSM辅助,对影像初始的镶嵌线进行优化进而得到一条最优化镶嵌线。实验证明:该方法可以准确、智能地对镶...在机载LIDAR(Light Detect And Ranging)系统中,针对正射影像镶嵌线优化需求,提出一种双惩罚系数的改进A*算法,通过点云生成高精度DSM辅助,对影像初始的镶嵌线进行优化进而得到一条最优化镶嵌线。实验证明:该方法可以准确、智能地对镶嵌线进行优化,改善镶嵌后影像质量。展开更多
本文基于分层格网点密度法实现了车载激光雷达(Light Detection And Ranging,LiDAR)点云数据中单株树信息的提取,并通过改变格网阈值研究了算法中出现的参数(格网大小、格网高度)以及点云数据中的噪声地物对单株树信息提取精度的影响。...本文基于分层格网点密度法实现了车载激光雷达(Light Detection And Ranging,LiDAR)点云数据中单株树信息的提取,并通过改变格网阈值研究了算法中出现的参数(格网大小、格网高度)以及点云数据中的噪声地物对单株树信息提取精度的影响。研究结果表明,采用分层格网点密度法,能有效地在点云数据中提取单株树的点云信息。展开更多
This paper presents a method to reconstruct 3-D models of trees from terrestrial laser scan(TLS)point clouds.This method uses the weighted locally optimal projection(WLOP)and the AdTree method to reconstruct detailed ...This paper presents a method to reconstruct 3-D models of trees from terrestrial laser scan(TLS)point clouds.This method uses the weighted locally optimal projection(WLOP)and the AdTree method to reconstruct detailed 3-D tree models.To improve its representation accuracy,the WLOP algorithm is introduced to consolidate the point cloud.Its reconstruction accuracy is tested using a dataset of ten trees,and the one-sided Hausdorff distances between the input point clouds and the resulting 3-D models are measured.The experimental results show that the optimal projection modeling method has an average one-sided Hausdorff distance(mean)lower by 30.74%and 6.43%compared with AdTree and AdQSM methods,respectively.Furthermore,it has an average one-sided Hausdorff distance(RMS)lower by 29.95%and 12.28%compared with AdTree and AdQSM methods.Results show that the 3-D model generated fits closely to the input point cloud data and ensures a high geometrical accuracy.展开更多
基金supported by the Future Challenge Program through the Agency for Defense Development funded by the Defense Acquisition Program Administration (No.UC200015RD)。
文摘Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.
基金Supported by the National Natural Science Foundation of China(No.41174002)the Opening Fund of Key Laboratory of the Ministry of Water Resources(No.2015003)the Fundamental Research Funds for the Central Universities(No.2014B38614)
文摘Airborne light detection and ranging( LIDAR) has revolutionized conventional methods for digital terrain models( DTMs) acquisition. Ground filtering for airborne LIDAR is one of the core steps taken to obtain a high quality DTM. This paper presents a segments-based progressive TIN( triangulated irregular network) densification( SPTD) filter that can automatically separate ground points from non-ground points. The SPTD method is composed of two key steps: point cloud segmentation and clustering by iterative judgement. The clustering method uses the dual distance to obtain a set of seed points as a coarse spatial clustering process. Then the rest of the valid point clouds are classified iteratively. Finally,the datasets provided by ISPRS are utilized to test the filtering performance.In comparison with the commercial software Terra Solid,the experimental results show that the SPTD method in this paper can avoid single threshold restrictions. The expected accuracy of ground point determination is capable of producing reliable DTMs in the discontinuous areas.
文摘机载激光雷达(LiDAR)点云电力线提取过程中存在杆塔形状复杂、噪声影响大等问题,导致电力线点云提取精度低,本文提出一种基于点云分块处理、格网划分的曲面拟合滤波、自适应密度聚类算法的电力线点云提取与重建方法。首先,根据电力线走向,对整体点云进行分块处理;其次,在曲面拟合算法的基础上,引入格网划分思想,提出一种改进曲面拟合滤波算法并进行点云滤波;最后,通过给出自适应密度聚类解决方案精确提取电力线点云。借助点云库(PCL)、libLAS库与Visual Studio 2017 C++开发环境实现本文算法,基于实测点云数据对本文方法进行测试与精度评定。结果表明:电力线提取精确率为97.82%、召回率为99.76%、F1值为98.78%,一次便可实现电力线的成功提取,在保证提取精度的同时提升了提取效率,本文研究能够为电力线智能巡检提供良好的工程应用价值。
文摘针对车载激光雷达(light detection and ranging,LiDAR)点云数据的不完整性问题,提出一种车载LiDAR点云数据分割以及基于分割后点云数据的半自动化建模方法。首先对点云数据进行标准格式转换及稀化;然后以不同地物的属性和几何特征为分割条件,分别建立道路、建筑物、树和路灯等附属设施的三维模型,并利用车载以及航空图像的纹理信息辅助建筑物的立面和顶面三维建模;最后以真实街景为实验区,基于拓普康IP-S2车载LiDAR点云数据,完成该街景的分割与建模。实验结果表明,该文提出的点云数据分割与街景地物重建方法比较简单,可实现道路和建筑物的半自动化分割;利用成熟的建模软件和方法,实现了建模的完整性和较强的可靠性。
文摘本文基于分层格网点密度法实现了车载激光雷达(Light Detection And Ranging,LiDAR)点云数据中单株树信息的提取,并通过改变格网阈值研究了算法中出现的参数(格网大小、格网高度)以及点云数据中的噪声地物对单株树信息提取精度的影响。研究结果表明,采用分层格网点密度法,能有效地在点云数据中提取单株树的点云信息。
基金supported in part by the National Natural Science Foundation of China(Nos.42271343,42177387)the Fund of State Key Laboratory of Remote Sensing Information and Image Analysis Technology of Beijing Research Institute of Uranium Geology under(No.6142A010403)
文摘This paper presents a method to reconstruct 3-D models of trees from terrestrial laser scan(TLS)point clouds.This method uses the weighted locally optimal projection(WLOP)and the AdTree method to reconstruct detailed 3-D tree models.To improve its representation accuracy,the WLOP algorithm is introduced to consolidate the point cloud.Its reconstruction accuracy is tested using a dataset of ten trees,and the one-sided Hausdorff distances between the input point clouds and the resulting 3-D models are measured.The experimental results show that the optimal projection modeling method has an average one-sided Hausdorff distance(mean)lower by 30.74%and 6.43%compared with AdTree and AdQSM methods,respectively.Furthermore,it has an average one-sided Hausdorff distance(RMS)lower by 29.95%and 12.28%compared with AdTree and AdQSM methods.Results show that the 3-D model generated fits closely to the input point cloud data and ensures a high geometrical accuracy.