The pharmaceutical industry increasingly values medicinal plants due to their perceived safety and costeffectiveness compared to modern drugs.Throughout the extensive history of medicinal plant usage,various plant par...The pharmaceutical industry increasingly values medicinal plants due to their perceived safety and costeffectiveness compared to modern drugs.Throughout the extensive history of medicinal plant usage,various plant parts,including flowers,leaves,and roots,have been acknowledged for their healing properties and employed in plant identification.Leaf images,however,stand out as the preferred and easily accessible source of information.Manual plant identification by plant taxonomists is intricate,time-consuming,and prone to errors,relying heavily on human perception.Artificial intelligence(AI)techniques offer a solution by automating plant recognition processes.This study thoroughly examines cutting-edge AI approaches for leaf image-based plant identification,drawing insights from literature across renowned repositories.This paper critically summarizes relevant literature based on AI algorithms,extracted features,and results achieved.Additionally,it analyzes extensively used datasets in automated plant classification research.It also offers deep insights into implemented techniques and methods employed for medicinal plant recognition.Moreover,this rigorous review study discusses opportunities and challenges in employing these AI-based approaches.Furthermore,in-depth statistical findings and lessons learned from this survey are highlighted with novel research areas with the aim of offering insights to the readers and motivating new research directions.This review is expected to serve as a foundational resource for future researchers in the field of AI-based identification of medicinal plants.展开更多
A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective....A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective. A new three-layer detection method was proposed to detect and identify white-backed planthoppers (WBPHs, Sogatella furcifera (Horvath)) and their developmental stages using image processing. In the first two detection layers, we used an AdaBoost classifier that was trained on a histogram of oriented gradient (HOG) features and a support vector machine (SVM) classifier that was trained on Gabor and Local Binary Pattern (LBP) features to detect WBPHs and remove impurities. We achieved a detection rate of 85.6% and a false detection rate of 10.2%. In the third detection layer, a SVM classifier that was trained on the HOG features was used to identify the different developmental stages of the WBPHs, and we achieved an identification rate of 73.1%, a false identification rate of 23.3%, and a 5.6% false detection rate for the images without WBPHs. The proposed three-layer detection method is feasible and effective for the identification of different developmental stages of planthoppers on rice plants in paddy fields.展开更多
Aim To study the parking management in the condition of vehicles' increasing. Methods The methods of pattern recognition and image processing were used to analyze the eigenvalues of parking lot images. Results ...Aim To study the parking management in the condition of vehicles' increasing. Methods The methods of pattern recognition and image processing were used to analyze the eigenvalues of parking lot images. Results The automatic identification of every parking place in the parking plot was realized. The automatic measuring of parked vehicle count and parking lot utilization was completed. Conclusion It can complete the real time recognition, and has some practicabilities.展开更多
The paper covers analysis and investigation of lighting automation system in low-traffic long-roads. The main objective is to provide optimal solution between expensive safe design that utilizes continuous street ligh...The paper covers analysis and investigation of lighting automation system in low-traffic long-roads. The main objective is to provide optimal solution between expensive safe design that utilizes continuous street lighting system at night for the entire road, or inexpensive design that sacrifices the safety, relying on using vehicles lighting, to eliminate the problem of high cost energy consumption during the night operation of the road. By taking into account both of these factors, smart lighting automation system is proposed using Pattern Recognition Technique applied on vehicle number-plates. In this proposal, the road is sectionalized into zones, and based on smart Pattern Recognition Technique, the control system of the road lighting illuminates only the zone that the vehicles pass through. Economic analysis is provided in this paper to support the value of using this design of lighting control system.展开更多
The objective of this work is to provide an automatic system to count white blood cells in a blood smear. To do so an experiment was assembled, composed by a standard microscope with two step motors coupled to its kno...The objective of this work is to provide an automatic system to count white blood cells in a blood smear. To do so an experiment was assembled, composed by a standard microscope with two step motors coupled to its knobs in order to move the microscope in x and y directions and a web cam which was mounted in the top of the microscope responsible for to acquire images from the smear. The step motors and the web cam are controlled by a microcomputer PC standard via software developed inDelphi. The motors use the parallel port to communicate with the PC and the camera use the USB port. The main idea is to set an initial point into the smear and the automated system will carry over the smear acquiring images (frames with 640 × 480 pixels) and counting the white blood cells encountered. The double histogram threshold technique is implemented to initially exclude the red cells from the image leaving only the white ones. Preliminaries results are obtained and show that the system is quite fast and has a good capacity of selection, even when different kinds of smear are used.展开更多
Video based vehicle detection technology is an integral part of Intelligent Transportation System (ITS), due to its non-intrusiveness and comprehensive vehicle behavior data collection capabilities. This paper propose...Video based vehicle detection technology is an integral part of Intelligent Transportation System (ITS), due to its non-intrusiveness and comprehensive vehicle behavior data collection capabilities. This paper proposes an efficient video based vehicle detection system based on Harris-Stephen corner detector algorithm. The algorithm was used to develop a stand alone vehicle detection and tracking system that determines vehicle counts and speeds at arterial roadways and freeways. The proposed video based vehicle detection system was developed to eliminate the need of complex calibration, robustness to contrasts variations, and better performance with low resolutions videos. The algorithm performance for accuracy in vehicle counts and speed was evaluated. The performance of the proposed system is equivalent or better compared to a commercial vehicle detection system. Using the developed vehicle detection and tracking system an advance warning intelligent transportation system was designed and implemented to alert commuters in advance of speed reductions and congestions at work zones and special events. The effectiveness of the advance warning system was evaluated and the impact discussed.展开更多
Diabetic retinopathy(DR),the main cause of irreversible blindness,is one of the most common complications of diabetes.At present,deep convolutional neural networks have achieved promising performance in automatic DR d...Diabetic retinopathy(DR),the main cause of irreversible blindness,is one of the most common complications of diabetes.At present,deep convolutional neural networks have achieved promising performance in automatic DR detection tasks.The convolution operation of methods is a local cross-correlation operation,whose receptive field de-termines the size of the local neighbourhood for processing.However,for retinal fundus photographs,there is not only the local information but also long-distance dependence between the lesion features(e.g.hemorrhages and exudates)scattered throughout the whole image.The proposed method incorporates correlations between long-range patches into the deep learning framework to improve DR detection.Patch-wise re-lationships are used to enhance the local patch features since lesions of DR usually appear as plaques.The Long-Range unit in the proposed network with a residual structure can be flexibly embedded into other trained networks.Extensive experimental results demon-strate that the proposed approach can achieve higher accuracy than existing state-of-the-art models on Messidor and EyePACS datasets.展开更多
Autonomous vehicles are currently regarded as an interesting topic in the AI field.For such vehicles,the lane where they are traveling should be detected.Most lane detection methods identify the whole road area with a...Autonomous vehicles are currently regarded as an interesting topic in the AI field.For such vehicles,the lane where they are traveling should be detected.Most lane detection methods identify the whole road area with all the lanes built on it.In addition to having a low accuracy rate and slow processing time,these methods require costly hardware and training datasets,and they fail under critical conditions.In this study,a novel detection algo-rithm for a lane where a car is currently traveling is proposed by combining simple traditional image processing with lightweight machine learning(ML)methods.First,a preparation phase removes all unwanted information to preserve the topographical representations of virtual edges within a one-pixel width around expected lanes.Then,a simple feature extraction phase obtains only the intersection point position and angle degree of each candidate edge.Subsequently,a proposed scheme that comprises consecutive lightweight ML models is applied to detect the correct lane by using the extracted features.This scheme is based on the density-based spatial clustering of applications with noise,random forest trees,a neural network,and rule-based methods.To increase accuracy and reduce processing time,each model supports the next one during detection.When a model detects a lane,the subsequent models are skipped.The models are trained on the Karlsruhe Institute of Technology and Toyota Technological Institute datasets.Results show that the proposed method is faster and achieves higher accuracy than state-of-the-art methods.This method is simple,can handle degradation conditions,and requires low-cost hardware and training datasets.展开更多
Recognizing handwritten characters remains a critical and formidable challenge within the realm of computervision. Although considerable strides have been made in enhancing English handwritten character recognitionthr...Recognizing handwritten characters remains a critical and formidable challenge within the realm of computervision. Although considerable strides have been made in enhancing English handwritten character recognitionthrough various techniques, deciphering Arabic handwritten characters is particularly intricate. This complexityarises from the diverse array of writing styles among individuals, coupled with the various shapes that a singlecharacter can take when positioned differently within document images, rendering the task more perplexing. Inthis study, a novel segmentation method for Arabic handwritten scripts is suggested. This work aims to locatethe local minima of the vertical and diagonal word image densities to precisely identify the segmentation pointsbetween the cursive letters. The proposed method starts with pre-processing the word image without affectingits main features, then calculates the directions pixel density of the word image by scanning it vertically and fromangles 30° to 90° to count the pixel density fromall directions and address the problem of overlapping letters, whichis a commonly attitude in writing Arabic texts by many people. Local minima and thresholds are also determinedto identify the ideal segmentation area. The proposed technique is tested on samples obtained fromtwo datasets: Aself-curated image dataset and the IFN/ENIT dataset. The results demonstrate that the proposed method achievesa significant improvement in the proportions of cursive segmentation of 92.96% on our dataset, as well as 89.37%on the IFN/ENIT dataset.展开更多
Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unma...Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unmanned Aerial Vehicles(UAVs),has captured considerable attention.One encouraging aspect is their combination with machine learning and deep learning algorithms,which have demonstrated remarkable outcomes in image classification.As a result of this powerful amalgamation,the adoption of spectral images has experienced exponential growth across various domains,with agriculture being one of the prominent beneficiaries.This paper presents an extensive survey encompassing multispectral and hyperspectral images,focusing on their applications for classification challenges in diverse agricultural areas,including plants,grains,fruits,and vegetables.By meticulously examining primary studies,we delve into the specific agricultural domains where multispectral and hyperspectral images have found practical use.Additionally,our attention is directed towards utilizing machine learning techniques for effectively classifying hyperspectral images within the agricultural context.The findings of our investigation reveal that deep learning and support vector machines have emerged as widely employed methods for hyperspectral image classification in agriculture.Nevertheless,we also shed light on the various issues and limitations of working with spectral images.This comprehensive analysis aims to provide valuable insights into the current state of spectral imaging in agriculture and its potential for future advancements.展开更多
The scientists are dedicated to studying the detection of Alzheimer’s disease onset to find a cure, or at the very least, medication that can slow the progression of the disease. This article explores the effectivene...The scientists are dedicated to studying the detection of Alzheimer’s disease onset to find a cure, or at the very least, medication that can slow the progression of the disease. This article explores the effectiveness of longitudinal data analysis, artificial intelligence, and machine learning approaches based on magnetic resonance imaging and positron emission tomography neuroimaging modalities for progression estimation and the detection of Alzheimer’s disease onset. The significance of feature extraction in highly complex neuroimaging data, identification of vulnerable brain regions, and the determination of the threshold values for plaques, tangles, and neurodegeneration of these regions will extensively be evaluated. Developing automated methods to improve the aforementioned research areas would enable specialists to determine the progression of the disease and find the link between the biomarkers and more accurate detection of Alzheimer’s disease onset.展开更多
In forest variety registration, visual traits of the plants appearance are widely used to discern different tree species. The new recognition system of leaf image strategy which based on neural network established to ...In forest variety registration, visual traits of the plants appearance are widely used to discern different tree species. The new recognition system of leaf image strategy which based on neural network established to administrate a hierarchical list of leaf images, some sorts of edge detection can be performed to identify the individual tokens of every image and the frame of the leaf can be got to differentiate the tree species. An approach based on back-propagation neuronal network is proposed and the programming language for the implementation is also Riven by using Java. The numerical simulations results have shown that the proposed leaf strategt is effective and feasible.展开更多
An algorithm for detecting moving IR point target in complex background is proposed, which is based on the Reverse Phase Feature of Neighborhood (RPFN) of target in difference between neighbor frame images that two ...An algorithm for detecting moving IR point target in complex background is proposed, which is based on the Reverse Phase Feature of Neighborhood (RPFN) of target in difference between neighbor frame images that two positions of the target in the difference image are near and the gray values of them are close to in absolute value but with inverse sign. Firstly, pairs of points with RPFN are detected in the difference image between neighbor frame images, with which a virtual vector graph is made, and then the moving point target can be detected by the vectors' sequence cumulated in vector graphs. In addition, a theorem for the convergence of detection of target contrail by this algorithm is given and proved so as to afford a solid guarantee for practical applications of the algorithm proposed in this paper. Finally, some simulation results with 1000 frames from 10 typical images in complex background show that moving point targets with SNR not lower than 1.5 can be detected effectively.展开更多
In the digital world,a wide range of handwritten and printed documents should be converted to digital format using a variety of tools,including mobile phones and scanners.Unfortunately,this is not an optimal procedure...In the digital world,a wide range of handwritten and printed documents should be converted to digital format using a variety of tools,including mobile phones and scanners.Unfortunately,this is not an optimal procedure,and the entire document image might be degraded.Imperfect conversion effects due to noise,motion blur,and skew distortion can lead to significant impact on the accuracy and effectiveness of document image segmentation and analysis in Optical Character Recognition(OCR)systems.In Document Image Analysis Systems(DIAS),skew estimation of images is a crucial step.In this paper,a novel,fast,and reliable skew detection algorithm based on the Radon Transform and Curve Length Fitness Function(CLF),so-called Radon CLF,was proposed.The Radon CLF model aims to take advantage of the properties of Radon spaces.The Radon CLF explores the dominating angle more effectively for a 1D signal than it does for a 2D input image due to an innovative fitness function formulation for a projected signal of the Radon space.Several significant performance indicators,including Mean Square Error(MSE),Mean Absolute Error(MAE),Peak Signal-to-Noise Ratio(PSNR),Structural Similarity Measure(SSIM),Accuracy,and run-time,were taken into consideration when assessing the performance of our model.In addition,a new dataset named DSI5000 was constructed to assess the accuracy of the CLF model.Both two-dimensional image signal and the Radon space have been used in our simulations to compare the noise effect.Obtained results show that the proposed method is more effective than other approaches already in use,with an accuracy of roughly 99.87%and a run-time of 0.048(s).The introduced model is far more accurate and timeefficient than current approaches in detecting image skew.展开更多
A new two-step framework is proposed for image segmentation. In the first step, the gray-value distribution of the given image is reshaped to have larger inter-class variance and less intra-class variance. In the sec-...A new two-step framework is proposed for image segmentation. In the first step, the gray-value distribution of the given image is reshaped to have larger inter-class variance and less intra-class variance. In the sec- ond step, the discriminant-based methods or clustering-based methods are performed on the reformed distribution. It is focused on the typical clustering methods-Gaussian mixture model (GMM) and its variant to demonstrate the feasibility of the framework. Due to the independence of the first step in its second step, it can be integrated into the pixel-based and the histogram-based methods to improve their segmentation quality. The experiments on artificial and real images show that the framework can achieve effective and robust segmentation results.展开更多
With characteristics of log cross-section image taken into consideration,this paper presents a new image processing algorithm for recognization and measurement of log cross sections,by which the number and area of qua...With characteristics of log cross-section image taken into consideration,this paper presents a new image processing algorithm for recognization and measurement of log cross sections,by which the number and area of quasi-circular log cross sections can be calculated automatically,thereby obtaining the total cross-section area and log volume.展开更多
Transformer tracking always takes paired template and search images as encoder input and conduct feature extraction and target‐search feature correlation by self and/or cross attention operations,thus the model compl...Transformer tracking always takes paired template and search images as encoder input and conduct feature extraction and target‐search feature correlation by self and/or cross attention operations,thus the model complexity will grow quadratically with the number of input images.To alleviate the burden of this tracking paradigm and facilitate practical deployment of Transformer‐based trackers,we propose a dual pooling transformer tracking framework,dubbed as DPT,which consists of three components:a simple yet efficient spatiotemporal attention model(SAM),a mutual correlation pooling Trans-former(MCPT)and a multiscale aggregation pooling Transformer(MAPT).SAM is designed to gracefully aggregates temporal dynamics and spatial appearance information of multi‐frame templates along space‐time dimensions.MCPT aims to capture multi‐scale pooled and correlated contextual features,which is followed by MAPT that aggregates multi‐scale features into a unified feature representation for tracking prediction.DPT tracker achieves AUC score of 69.5 on LaSOT and precision score of 82.8 on Track-ingNet while maintaining a shorter sequence length of attention tokens,fewer parameters and FLOPs compared to existing state‐of‐the‐art(SOTA)Transformer tracking methods.Extensive experiments demonstrate that DPT tracker yields a strong real‐time tracking baseline with a good trade‐off between tracking performance and inference efficiency.展开更多
文摘The pharmaceutical industry increasingly values medicinal plants due to their perceived safety and costeffectiveness compared to modern drugs.Throughout the extensive history of medicinal plant usage,various plant parts,including flowers,leaves,and roots,have been acknowledged for their healing properties and employed in plant identification.Leaf images,however,stand out as the preferred and easily accessible source of information.Manual plant identification by plant taxonomists is intricate,time-consuming,and prone to errors,relying heavily on human perception.Artificial intelligence(AI)techniques offer a solution by automating plant recognition processes.This study thoroughly examines cutting-edge AI approaches for leaf image-based plant identification,drawing insights from literature across renowned repositories.This paper critically summarizes relevant literature based on AI algorithms,extracted features,and results achieved.Additionally,it analyzes extensively used datasets in automated plant classification research.It also offers deep insights into implemented techniques and methods employed for medicinal plant recognition.Moreover,this rigorous review study discusses opportunities and challenges in employing these AI-based approaches.Furthermore,in-depth statistical findings and lessons learned from this survey are highlighted with novel research areas with the aim of offering insights to the readers and motivating new research directions.This review is expected to serve as a foundational resource for future researchers in the field of AI-based identification of medicinal plants.
基金financially supported by the National High Technology Research and Development Program of China (863 Program, 2013AA102402)the 521 Talent Project of Zhejiang Sci-Tech University, Chinathe Key Research and Development Program of Zhejiang Province, China (2015C03023)
文摘A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective. A new three-layer detection method was proposed to detect and identify white-backed planthoppers (WBPHs, Sogatella furcifera (Horvath)) and their developmental stages using image processing. In the first two detection layers, we used an AdaBoost classifier that was trained on a histogram of oriented gradient (HOG) features and a support vector machine (SVM) classifier that was trained on Gabor and Local Binary Pattern (LBP) features to detect WBPHs and remove impurities. We achieved a detection rate of 85.6% and a false detection rate of 10.2%. In the third detection layer, a SVM classifier that was trained on the HOG features was used to identify the different developmental stages of the WBPHs, and we achieved an identification rate of 73.1%, a false identification rate of 23.3%, and a 5.6% false detection rate for the images without WBPHs. The proposed three-layer detection method is feasible and effective for the identification of different developmental stages of planthoppers on rice plants in paddy fields.
文摘Aim To study the parking management in the condition of vehicles' increasing. Methods The methods of pattern recognition and image processing were used to analyze the eigenvalues of parking lot images. Results The automatic identification of every parking place in the parking plot was realized. The automatic measuring of parked vehicle count and parking lot utilization was completed. Conclusion It can complete the real time recognition, and has some practicabilities.
文摘The paper covers analysis and investigation of lighting automation system in low-traffic long-roads. The main objective is to provide optimal solution between expensive safe design that utilizes continuous street lighting system at night for the entire road, or inexpensive design that sacrifices the safety, relying on using vehicles lighting, to eliminate the problem of high cost energy consumption during the night operation of the road. By taking into account both of these factors, smart lighting automation system is proposed using Pattern Recognition Technique applied on vehicle number-plates. In this proposal, the road is sectionalized into zones, and based on smart Pattern Recognition Technique, the control system of the road lighting illuminates only the zone that the vehicles pass through. Economic analysis is provided in this paper to support the value of using this design of lighting control system.
文摘The objective of this work is to provide an automatic system to count white blood cells in a blood smear. To do so an experiment was assembled, composed by a standard microscope with two step motors coupled to its knobs in order to move the microscope in x and y directions and a web cam which was mounted in the top of the microscope responsible for to acquire images from the smear. The step motors and the web cam are controlled by a microcomputer PC standard via software developed inDelphi. The motors use the parallel port to communicate with the PC and the camera use the USB port. The main idea is to set an initial point into the smear and the automated system will carry over the smear acquiring images (frames with 640 × 480 pixels) and counting the white blood cells encountered. The double histogram threshold technique is implemented to initially exclude the red cells from the image leaving only the white ones. Preliminaries results are obtained and show that the system is quite fast and has a good capacity of selection, even when different kinds of smear are used.
文摘Video based vehicle detection technology is an integral part of Intelligent Transportation System (ITS), due to its non-intrusiveness and comprehensive vehicle behavior data collection capabilities. This paper proposes an efficient video based vehicle detection system based on Harris-Stephen corner detector algorithm. The algorithm was used to develop a stand alone vehicle detection and tracking system that determines vehicle counts and speeds at arterial roadways and freeways. The proposed video based vehicle detection system was developed to eliminate the need of complex calibration, robustness to contrasts variations, and better performance with low resolutions videos. The algorithm performance for accuracy in vehicle counts and speed was evaluated. The performance of the proposed system is equivalent or better compared to a commercial vehicle detection system. Using the developed vehicle detection and tracking system an advance warning intelligent transportation system was designed and implemented to alert commuters in advance of speed reductions and congestions at work zones and special events. The effectiveness of the advance warning system was evaluated and the impact discussed.
基金National Natural Science Foundation of China,Grant/Award Numbers:62001141,62272319Science,Technology and Innovation Commission of Shenzhen Municipality,Grant/Award Numbers:GJHZ20210705141812038,JCYJ20210324094413037,JCYJ20210324131800002,RCBS20210609103820029Stable Support Projects for Shenzhen Higher Education Institutions,Grant/Award Number:20220715183602001。
文摘Diabetic retinopathy(DR),the main cause of irreversible blindness,is one of the most common complications of diabetes.At present,deep convolutional neural networks have achieved promising performance in automatic DR detection tasks.The convolution operation of methods is a local cross-correlation operation,whose receptive field de-termines the size of the local neighbourhood for processing.However,for retinal fundus photographs,there is not only the local information but also long-distance dependence between the lesion features(e.g.hemorrhages and exudates)scattered throughout the whole image.The proposed method incorporates correlations between long-range patches into the deep learning framework to improve DR detection.Patch-wise re-lationships are used to enhance the local patch features since lesions of DR usually appear as plaques.The Long-Range unit in the proposed network with a residual structure can be flexibly embedded into other trained networks.Extensive experimental results demon-strate that the proposed approach can achieve higher accuracy than existing state-of-the-art models on Messidor and EyePACS datasets.
基金funded by DEANSHIP OF SCIENTIFIC RESEARCH AT UMM AL-QURA UNIVERSITY,Grant Number 22UQU4361009DSR04.
文摘Autonomous vehicles are currently regarded as an interesting topic in the AI field.For such vehicles,the lane where they are traveling should be detected.Most lane detection methods identify the whole road area with all the lanes built on it.In addition to having a low accuracy rate and slow processing time,these methods require costly hardware and training datasets,and they fail under critical conditions.In this study,a novel detection algo-rithm for a lane where a car is currently traveling is proposed by combining simple traditional image processing with lightweight machine learning(ML)methods.First,a preparation phase removes all unwanted information to preserve the topographical representations of virtual edges within a one-pixel width around expected lanes.Then,a simple feature extraction phase obtains only the intersection point position and angle degree of each candidate edge.Subsequently,a proposed scheme that comprises consecutive lightweight ML models is applied to detect the correct lane by using the extracted features.This scheme is based on the density-based spatial clustering of applications with noise,random forest trees,a neural network,and rule-based methods.To increase accuracy and reduce processing time,each model supports the next one during detection.When a model detects a lane,the subsequent models are skipped.The models are trained on the Karlsruhe Institute of Technology and Toyota Technological Institute datasets.Results show that the proposed method is faster and achieves higher accuracy than state-of-the-art methods.This method is simple,can handle degradation conditions,and requires low-cost hardware and training datasets.
文摘Recognizing handwritten characters remains a critical and formidable challenge within the realm of computervision. Although considerable strides have been made in enhancing English handwritten character recognitionthrough various techniques, deciphering Arabic handwritten characters is particularly intricate. This complexityarises from the diverse array of writing styles among individuals, coupled with the various shapes that a singlecharacter can take when positioned differently within document images, rendering the task more perplexing. Inthis study, a novel segmentation method for Arabic handwritten scripts is suggested. This work aims to locatethe local minima of the vertical and diagonal word image densities to precisely identify the segmentation pointsbetween the cursive letters. The proposed method starts with pre-processing the word image without affectingits main features, then calculates the directions pixel density of the word image by scanning it vertically and fromangles 30° to 90° to count the pixel density fromall directions and address the problem of overlapping letters, whichis a commonly attitude in writing Arabic texts by many people. Local minima and thresholds are also determinedto identify the ideal segmentation area. The proposed technique is tested on samples obtained fromtwo datasets: Aself-curated image dataset and the IFN/ENIT dataset. The results demonstrate that the proposed method achievesa significant improvement in the proportions of cursive segmentation of 92.96% on our dataset, as well as 89.37%on the IFN/ENIT dataset.
文摘Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unmanned Aerial Vehicles(UAVs),has captured considerable attention.One encouraging aspect is their combination with machine learning and deep learning algorithms,which have demonstrated remarkable outcomes in image classification.As a result of this powerful amalgamation,the adoption of spectral images has experienced exponential growth across various domains,with agriculture being one of the prominent beneficiaries.This paper presents an extensive survey encompassing multispectral and hyperspectral images,focusing on their applications for classification challenges in diverse agricultural areas,including plants,grains,fruits,and vegetables.By meticulously examining primary studies,we delve into the specific agricultural domains where multispectral and hyperspectral images have found practical use.Additionally,our attention is directed towards utilizing machine learning techniques for effectively classifying hyperspectral images within the agricultural context.The findings of our investigation reveal that deep learning and support vector machines have emerged as widely employed methods for hyperspectral image classification in agriculture.Nevertheless,we also shed light on the various issues and limitations of working with spectral images.This comprehensive analysis aims to provide valuable insights into the current state of spectral imaging in agriculture and its potential for future advancements.
文摘The scientists are dedicated to studying the detection of Alzheimer’s disease onset to find a cure, or at the very least, medication that can slow the progression of the disease. This article explores the effectiveness of longitudinal data analysis, artificial intelligence, and machine learning approaches based on magnetic resonance imaging and positron emission tomography neuroimaging modalities for progression estimation and the detection of Alzheimer’s disease onset. The significance of feature extraction in highly complex neuroimaging data, identification of vulnerable brain regions, and the determination of the threshold values for plaques, tangles, and neurodegeneration of these regions will extensively be evaluated. Developing automated methods to improve the aforementioned research areas would enable specialists to determine the progression of the disease and find the link between the biomarkers and more accurate detection of Alzheimer’s disease onset.
基金Foundation project: This paper was supported by National Natural Science Foundation of China (No. 30371126).
文摘In forest variety registration, visual traits of the plants appearance are widely used to discern different tree species. The new recognition system of leaf image strategy which based on neural network established to administrate a hierarchical list of leaf images, some sorts of edge detection can be performed to identify the individual tokens of every image and the frame of the leaf can be got to differentiate the tree species. An approach based on back-propagation neuronal network is proposed and the programming language for the implementation is also Riven by using Java. The numerical simulations results have shown that the proposed leaf strategt is effective and feasible.
文摘An algorithm for detecting moving IR point target in complex background is proposed, which is based on the Reverse Phase Feature of Neighborhood (RPFN) of target in difference between neighbor frame images that two positions of the target in the difference image are near and the gray values of them are close to in absolute value but with inverse sign. Firstly, pairs of points with RPFN are detected in the difference image between neighbor frame images, with which a virtual vector graph is made, and then the moving point target can be detected by the vectors' sequence cumulated in vector graphs. In addition, a theorem for the convergence of detection of target contrail by this algorithm is given and proved so as to afford a solid guarantee for practical applications of the algorithm proposed in this paper. Finally, some simulation results with 1000 frames from 10 typical images in complex background show that moving point targets with SNR not lower than 1.5 can be detected effectively.
文摘In the digital world,a wide range of handwritten and printed documents should be converted to digital format using a variety of tools,including mobile phones and scanners.Unfortunately,this is not an optimal procedure,and the entire document image might be degraded.Imperfect conversion effects due to noise,motion blur,and skew distortion can lead to significant impact on the accuracy and effectiveness of document image segmentation and analysis in Optical Character Recognition(OCR)systems.In Document Image Analysis Systems(DIAS),skew estimation of images is a crucial step.In this paper,a novel,fast,and reliable skew detection algorithm based on the Radon Transform and Curve Length Fitness Function(CLF),so-called Radon CLF,was proposed.The Radon CLF model aims to take advantage of the properties of Radon spaces.The Radon CLF explores the dominating angle more effectively for a 1D signal than it does for a 2D input image due to an innovative fitness function formulation for a projected signal of the Radon space.Several significant performance indicators,including Mean Square Error(MSE),Mean Absolute Error(MAE),Peak Signal-to-Noise Ratio(PSNR),Structural Similarity Measure(SSIM),Accuracy,and run-time,were taken into consideration when assessing the performance of our model.In addition,a new dataset named DSI5000 was constructed to assess the accuracy of the CLF model.Both two-dimensional image signal and the Radon space have been used in our simulations to compare the noise effect.Obtained results show that the proposed method is more effective than other approaches already in use,with an accuracy of roughly 99.87%and a run-time of 0.048(s).The introduced model is far more accurate and timeefficient than current approaches in detecting image skew.
基金Supported by the National Natural Science Foundation of China(60505004,60773061)~~
文摘A new two-step framework is proposed for image segmentation. In the first step, the gray-value distribution of the given image is reshaped to have larger inter-class variance and less intra-class variance. In the sec- ond step, the discriminant-based methods or clustering-based methods are performed on the reformed distribution. It is focused on the typical clustering methods-Gaussian mixture model (GMM) and its variant to demonstrate the feasibility of the framework. Due to the independence of the first step in its second step, it can be integrated into the pixel-based and the histogram-based methods to improve their segmentation quality. The experiments on artificial and real images show that the framework can achieve effective and robust segmentation results.
文摘With characteristics of log cross-section image taken into consideration,this paper presents a new image processing algorithm for recognization and measurement of log cross sections,by which the number and area of quasi-circular log cross sections can be calculated automatically,thereby obtaining the total cross-section area and log volume.
基金the National Natural Science Foundation of China,Grant/Award Number:62006065the Science and Technology Research Program of Chongqing Municipal Education Commission,Grant/Award Number:KJQN202100634+1 种基金the Natural Science Foundation of Chongqing,Grant/Award Number:CSTB2022NSCQ‐MSX1202Chongqing Municipal Education Commission,Grant/Award Number:KJQN202100634。
文摘Transformer tracking always takes paired template and search images as encoder input and conduct feature extraction and target‐search feature correlation by self and/or cross attention operations,thus the model complexity will grow quadratically with the number of input images.To alleviate the burden of this tracking paradigm and facilitate practical deployment of Transformer‐based trackers,we propose a dual pooling transformer tracking framework,dubbed as DPT,which consists of three components:a simple yet efficient spatiotemporal attention model(SAM),a mutual correlation pooling Trans-former(MCPT)and a multiscale aggregation pooling Transformer(MAPT).SAM is designed to gracefully aggregates temporal dynamics and spatial appearance information of multi‐frame templates along space‐time dimensions.MCPT aims to capture multi‐scale pooled and correlated contextual features,which is followed by MAPT that aggregates multi‐scale features into a unified feature representation for tracking prediction.DPT tracker achieves AUC score of 69.5 on LaSOT and precision score of 82.8 on Track-ingNet while maintaining a shorter sequence length of attention tokens,fewer parameters and FLOPs compared to existing state‐of‐the‐art(SOTA)Transformer tracking methods.Extensive experiments demonstrate that DPT tracker yields a strong real‐time tracking baseline with a good trade‐off between tracking performance and inference efficiency.