Cross-region innovation is widely recognized as an important source of the long-term regional innovation capacity.In the recent past,a growing number of studies has investigated the network structure and mechanisms of...Cross-region innovation is widely recognized as an important source of the long-term regional innovation capacity.In the recent past,a growing number of studies has investigated the network structure and mechanisms of cross-region innovation collaboration in various contexts.However,existing research mainly focuses on physical effects,such as geographical distance and high-speed railway connections.These studies ignore the intangible drivers in a changing environment,the more digitalized economy and the increasingly solidified innovation network structure.Thus,the focus of this study is on estimating determinants of innovation networks,especially on intangible drivers,which have been largely neglected so far.Using city-level data of Chinese patents(excluding Hong Kong,Macao,and Taiwan Province of China),we trace innovation networks across Chinese cities over a long period of time.By integrating a measure on Information and Communications Technology(ICT)development gap and network structural effects into the general proximity framework,this paper explores the changing mechanisms of Chinese innovation networks from a new perspective.The results show that the structure of cross-region innovation networks has changed in China.As mechanisms behind this development,the results confirm the increasingly important role of intangible drivers in Chinese inter-city innovation collaboration when controlling for effects of physical proximity,such as geographical distance.Since digitalization and coordinated development are the mainstream trends in China and other developing countries,these countries'inter-city innovation collaboration patterns will witness dramatic changes under the influence of intangible drivers.展开更多
As the rapid development of automotive telematics,modern vehicles are expected to be connected through heterogeneous radio access technologies and are able to exchange massive information with their surrounding enviro...As the rapid development of automotive telematics,modern vehicles are expected to be connected through heterogeneous radio access technologies and are able to exchange massive information with their surrounding environment. By significantly expanding the network scale and conducting both real-time and long-term information processing, the traditional Vehicular AdHoc Networks(VANETs) are evolving to the Internet of Vehicles(Io V), which promises efficient and intelligent prospect for the future transportation system. On the other hand, vehicles are not only consuming but also generating a huge amount and enormous types of data, which is referred to as Big Data. In this article, we first investigate the relationship between Io V and big data in vehicular environment, mainly on how Io V supports the transmission, storage, computing of the big data, and how Io V benefits from big data in terms of Io V characterization,performance evaluation and big data assisted communication protocol design. We then investigate the application of Io V big data in autonomous vehicles. Finally, the emerging issues of the big data enabled Io V are discussed.展开更多
This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is pr...This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is presented to describe the coordinated platoon behavior of leader-follower vehicles in the simultaneous presence of unknown external disturbances and an unknown leader control input.Under such a platoon model,the central aim is to achieve robust platoon formation tracking with desired inter-vehicle spacing and same velocities and accelerations guided by the leader,while attaining improved communication efficiency.Toward this aim,a novel bandwidth-aware dynamic event-triggered scheduling mechanism is developed.One salient feature of the scheduling mechanism is that the threshold parameter in the triggering law is dynamically adjusted over time based on both vehicular state variations and bandwidth status.Then,a sufficient condition for platoon control system stability and performance analysis as well as a co-design criterion of the admissible event-triggered platooning control law and the desired scheduling mechanism are derived.Finally,simulation results are provided to substantiate the effectiveness and merits of the proposed co-design approach for guaranteeing a trade-off between robust platooning control performance and communication efficiency.展开更多
Autonomous driving is an emerging technology attracting interests from various sectors in recent years.Most of existing work treats autonomous vehicles as isolated individuals and has focused on developing separate in...Autonomous driving is an emerging technology attracting interests from various sectors in recent years.Most of existing work treats autonomous vehicles as isolated individuals and has focused on developing separate intelligent modules.In this paper,we attempt to exploit the connectivity among vehicles and propose a systematic framework to develop autonomous driving techniques.We first introduce a general hierarchical information fusion framework for cooperative sensing to obtain global situational awareness for vehicles.Following this,a cooperative intelligence framework is proposed for autonomous driving systems.This general framework can guide the development of data collection,sharing and processing strategies to realize different intelligent functions in autonomous driving.展开更多
基金Under the auspices of China Scholarship Council。
文摘Cross-region innovation is widely recognized as an important source of the long-term regional innovation capacity.In the recent past,a growing number of studies has investigated the network structure and mechanisms of cross-region innovation collaboration in various contexts.However,existing research mainly focuses on physical effects,such as geographical distance and high-speed railway connections.These studies ignore the intangible drivers in a changing environment,the more digitalized economy and the increasingly solidified innovation network structure.Thus,the focus of this study is on estimating determinants of innovation networks,especially on intangible drivers,which have been largely neglected so far.Using city-level data of Chinese patents(excluding Hong Kong,Macao,and Taiwan Province of China),we trace innovation networks across Chinese cities over a long period of time.By integrating a measure on Information and Communications Technology(ICT)development gap and network structural effects into the general proximity framework,this paper explores the changing mechanisms of Chinese innovation networks from a new perspective.The results show that the structure of cross-region innovation networks has changed in China.As mechanisms behind this development,the results confirm the increasingly important role of intangible drivers in Chinese inter-city innovation collaboration when controlling for effects of physical proximity,such as geographical distance.Since digitalization and coordinated development are the mainstream trends in China and other developing countries,these countries'inter-city innovation collaboration patterns will witness dramatic changes under the influence of intangible drivers.
基金supported by the National Natural Science Foundation of China(91638204)Natural Sciences and Engineering Research Council(NSERC)
文摘As the rapid development of automotive telematics,modern vehicles are expected to be connected through heterogeneous radio access technologies and are able to exchange massive information with their surrounding environment. By significantly expanding the network scale and conducting both real-time and long-term information processing, the traditional Vehicular AdHoc Networks(VANETs) are evolving to the Internet of Vehicles(Io V), which promises efficient and intelligent prospect for the future transportation system. On the other hand, vehicles are not only consuming but also generating a huge amount and enormous types of data, which is referred to as Big Data. In this article, we first investigate the relationship between Io V and big data in vehicular environment, mainly on how Io V supports the transmission, storage, computing of the big data, and how Io V benefits from big data in terms of Io V characterization,performance evaluation and big data assisted communication protocol design. We then investigate the application of Io V big data in autonomous vehicles. Finally, the emerging issues of the big data enabled Io V are discussed.
基金This work was supported in part by the Australian Research Council Discovery Early Career Researcher Award under Grant DE200101128.
文摘This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is presented to describe the coordinated platoon behavior of leader-follower vehicles in the simultaneous presence of unknown external disturbances and an unknown leader control input.Under such a platoon model,the central aim is to achieve robust platoon formation tracking with desired inter-vehicle spacing and same velocities and accelerations guided by the leader,while attaining improved communication efficiency.Toward this aim,a novel bandwidth-aware dynamic event-triggered scheduling mechanism is developed.One salient feature of the scheduling mechanism is that the threshold parameter in the triggering law is dynamically adjusted over time based on both vehicular state variations and bandwidth status.Then,a sufficient condition for platoon control system stability and performance analysis as well as a co-design criterion of the admissible event-triggered platooning control law and the desired scheduling mechanism are derived.Finally,simulation results are provided to substantiate the effectiveness and merits of the proposed co-design approach for guaranteeing a trade-off between robust platooning control performance and communication efficiency.
基金in part supported by the Ministry National Key Research and Development Project under Grant 2017YFE0121400the Major Project from Beijing Municipal Science and Technology Commission under Grant Z181100003218007the National Natural Science Foundation of China under Grants 61622101 and 61571020
文摘Autonomous driving is an emerging technology attracting interests from various sectors in recent years.Most of existing work treats autonomous vehicles as isolated individuals and has focused on developing separate intelligent modules.In this paper,we attempt to exploit the connectivity among vehicles and propose a systematic framework to develop autonomous driving techniques.We first introduce a general hierarchical information fusion framework for cooperative sensing to obtain global situational awareness for vehicles.Following this,a cooperative intelligence framework is proposed for autonomous driving systems.This general framework can guide the development of data collection,sharing and processing strategies to realize different intelligent functions in autonomous driving.