Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical cha...Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.展开更多
Through vehicle-to-vehicle(V2V)communication,autonomizing a vehicle platoon can significantly reduce the distance between vehicles,thereby reducing air resistance and improving road traffic efficiency.The gradual matu...Through vehicle-to-vehicle(V2V)communication,autonomizing a vehicle platoon can significantly reduce the distance between vehicles,thereby reducing air resistance and improving road traffic efficiency.The gradual maturation of platoon control technology is enabling vehicle platoons to achieve basic driving functions,thereby permitting large-scale vehicle platoon scheduling and planning,which is essential for industrialized platoon applications and generates significant economic benefits.Scheduling and planning are required in many aspects of vehicle platoon operation;here,we outline the advantages and challenges of a number of the most important applications,including platoon formation scheduling,lane-change planning,passing traffic light scheduling,and vehicle resource allocation.This paper’s primary objective is to integrate current independent platoon scheduling and planning techniques into an integrated architecture to meet the demands of large-scale platoon applications.To this end,we first summarize the general techniques of vehicle platoon scheduling and planning,then list the primary scenarios for scheduling and planning technique application,and finally discuss current challenges and future development trends in platoon scheduling and planning.We hope that this paper can encourage related platoon researchers to conduct more systematic research and integrate multiple platoon scheduling and planning technologies and applications.展开更多
In the intelligent transportation system, the autonomous vehicle platoon is a promising concept for addressing traffic congestion problems. However, under certain conditions, the platoon’s advantage cannot be properl...In the intelligent transportation system, the autonomous vehicle platoon is a promising concept for addressing traffic congestion problems. However, under certain conditions, the platoon’s advantage cannot be properly developed, especially when stopping for electronic toll collection (ETC) to pay the toll fee using the highway. This study proposes a software architectural platform that enables connected automated vehicles to reserve a grid-based alternative approach to replace current highway toll collection systems. A planned travel route is reserved in advance by a connected automated vehicle in a platoon, and travel is based on reservation information. We use driving information acquired by communication mechanisms installed in connected automated vehicles to develop a dynamic map platform that collects highway toll tax based on reserving spatio-temporal grids. Spatio-temporal sections are developed by dividing space and time into equal grids and assigning a certain road tax rate. The results of the performance evaluation reveal that the proposed method appropriately reserves the specified grids and collects toll taxes accurately based on a spatio-temporal grid with minimal communication time and no data package loss. Likely, using the proposed method to mediate driving on a one-kilometer route takes an average of 36.5 seconds, as compared to ETC and the combination of ETC and freeway road lane methods, which take 46.6 and 53.8 seconds, respectively, for 1000 vehicles. Consequently, our proposed method’s travel time improvements will reduce congestion by more effectively exploiting road capacity as well as enhance the number of platoons while providing non-stoppable travel for autonomous vehicles.展开更多
Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumpti...Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumption and vehicle emissions.A fundamental issue in CAVs is platooning control that empowers a convoy of CAVs to be cooperatively maneuvered with desired longitudinal spacings and identical velocities on roads.This paper addresses the issue of resilient and safe platooning control of CAVs subject to intermittent denial-of-service(DoS)attacks that disrupt vehicle-to-vehicle communications.First,a heterogeneous and uncertain vehicle longitudinal dynamic model is presented to accommodate a variety of uncertainties,including diverse vehicle masses and engine inertial delays,unknown and nonlinear resistance forces,and a dynamic platoon leader.Then,a resilient and safe distributed longitudinal platooning control law is constructed with an aim to preserve simultaneous individual vehicle stability,attack resilience,platoon safety and scalability.Furthermore,a numerically efficient offline design algorithm for determining the desired platoon control law is developed,under which the platoon resilience against DoS attacks can be maximized but the anticipated stability,safety and scalability requirements remain preserved.Finally,extensive numerical experiments are provided to substantiate the efficacy of the proposed platooning method.展开更多
The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take ...The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take advantage of these developments.Here we consider the case of many vehicles forming a queue,i.e.,vehicles traveling at a predetermined speed and distance apart.While the majority of existing studies on this subject have focused on the influence of the longitudinal vehicle spacing,vehicle speed,and the number of vehicles on aerodynamic drag and fuel economy,this study considers the lateral offset distance of the vehicle queue.The group fuel consumption savings rate is calculated and analyzed.As also demonstrated by experimental results,some aerodynamic benefits exist.Moreover,the fuel consumption saving rate of the vehicle queue decreases as the lateral offset distance increases.展开更多
This paper investigates the problem of fuel-efficient and safe control of autonomous vehicle platoons. We present a two-part hierarchical control method that can guarantee platoon stability with minimal fuel consumpti...This paper investigates the problem of fuel-efficient and safe control of autonomous vehicle platoons. We present a two-part hierarchical control method that can guarantee platoon stability with minimal fuel consumption. The first part vehicle controller is derived in the context of receding horizon optimal control by constructing and solving an optimization problem of overall fuel consumption. The Second part platoon controller is a complementation of the first part, which is given on the basis of platoon stability analysis. The effectiveness of the presented platoon control method is demonstrated by both numerical simulations and experiments with laboratory-scale Arduino cars.展开更多
As one of the typical applications of connected vehicles(CVs),the vehicle platoon control technique has been proven to have the advantages of reducing emissions,improving traffic throughout and driving safety.In this ...As one of the typical applications of connected vehicles(CVs),the vehicle platoon control technique has been proven to have the advantages of reducing emissions,improving traffic throughout and driving safety.In this paper,a unified hierarchical framework is designed for cooperative control of CVs with both heterogeneous model parameters and structures.By separating neighboring information interaction from local dynamics control,the proposed framework is designed to contain an upper-level observing layer and a lower-level tracking control layer,which helps address the heterogeneity in vehicle parameters and structures.Within the proposed framework,an observer is designed for following vehicles to observe the leading vehicle's states using neighboring communication,while a tracking controller is designed to track the observed leading vehicle using local feedback control.Closed-loop stability in the absence and presence of communication time delay is analyzed,and the observer is further extended to a finite time convergent one to address string stability under general communication topology.Numerical simulation and field experiment verify the effectiveness of the proposed method.展开更多
Inspired by mobile edge computing(MEC),edge learning has gained a momentum by directly performing model training at network edge without sending massive data to a centralized data center.However,the quality of model t...Inspired by mobile edge computing(MEC),edge learning has gained a momentum by directly performing model training at network edge without sending massive data to a centralized data center.However,the quality of model training will be affected by the limited communication and computing resources of network edge.In this paper,how to improve the training performance of a federated learning system aided by intelligent reflecting surface(IRS)over vehicle platooning networks is studied,where multiple platoons train a shared federated learning model.Multi-platoon cooperation can alleviate the pressure of data processing caused by the limited computing resources of single platoon.Meanwhile,IRS can enhance the inter-platoon communication in a cost-effective and energy-efficient manner.Firstly,the federated learning optimization problem of maximizing the learning accuracy is formulated by jointing platoon scheduling,bandwidth allocation and phase shifts at the IRS to maximize the number of scheduled platoon.Specif-ically,in the proposed learning architecture each platoon updates the learning model with its own data and uploads it to the global model through IRS-based wireless networks.Then,a method based on sequential optimization algorithm(SOA)and a group-based optimization method are analyzed for single IRS aided and large-scale IRS aided commu-nication,respectively.Finally,a platoon scheduling scheme is designed based on the communication reliability and computing reliability of platoons.Simulation results demonstrate that large-scale IRS assisted communication can effectively improve the reliability of multi-user communication networks.The scheduling scheme based on learning reliability balances the communication performance and computing performance of platoons.展开更多
Due to the limited bandwidth and transmission congestion of the vehicle platoon's communication,it is inevitable to induce time delay,which significantly degrades the control performance of the vehicle platoon,eve...Due to the limited bandwidth and transmission congestion of the vehicle platoon's communication,it is inevitable to induce time delay,which significantly degrades the control performance of the vehicle platoon,even resulting in instability.This paper focuses on analyzing the internal stability under generic communication topologies and presents a method of computing the exact time delay margin(ETDM).The proposed method can offer a necessary and sufficient internal stability condition with no conservatism.Firstly,to reduce the analytical complexity and computational burden elegantly,we decompose the closed-loop platoon dynamics into a set of individual subsystems via similarity transformation and matrix factorization.This decomposition approach is applicable for any general communication topology.Secondly,an explicit formula is deduced to compute the ETDM by surveying the characteristic roots'distribution of all these individual subsystems.It is further demonstrated that only the positive purely imaginary roots need to be considered to compute the ETDM.Finally,simulations are conducted to demonstrate the effectiveness of the theoretical claims.展开更多
Based on the four-element model,this paper reviewed the important research progress in vehicle platoon,compared the advantages and disadvantages of different models in each element longitudinally,and summarized the li...Based on the four-element model,this paper reviewed the important research progress in vehicle platoon,compared the advantages and disadvantages of different models in each element longitudinally,and summarized the linkage between each element horizontally.The stability criteria are briefly reviewed from three dimensions:local stability,string stability,and traffic flow stability.The impact of communication delay on vehicle platoon is quantitatively summarized from two aspects:the variation of controller gains and the variation of headway time values.Aiming at the inevitable communication delay in vehicle platoon,the compensation strategies are analyzed from five levels.(1)Optimizing the communication network structure.(2)Reconstructing acceleration information.(3)Tuning controller gains.(4)Constructing a multi-branch selection structure.(5)Improving the controller.The results show that,although these compensation strategies can alleviate the negative impact of communication delay to a certain extent,they also have some defects such as difficulty in adapting to complex and various real road conditions,poor accuracy and real-time performance,insufficient security,and limited application scenarios.It is necessary to further improve the accuracy and real-time performance of the device,design an encrypted and scalable network architecture to ensure communication security and adaptability,and conduct further real vehicle testing.展开更多
Purpose–This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane(CLL)intersections.Design/methodology/approach–The lateral lane change control and t...Purpose–This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane(CLL)intersections.Design/methodology/approach–The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness.The proposed model is cast into a mixed-integer linear programming problem and then solved by the branch-and-bound technique.Findings–The proposed model has a promising control effect under different geometric controlled conditions.Moreover,the proposed model performs robustly under various safety time headways,lengths of the CLL and green times of the main signal.Originality/value–This study proposed a centralized optimal control model for automated left-turn platoon at CLL intersections.The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness。展开更多
基金supported in part by the Australian Research Council Discovery Early Career Researcher Award(DE200101128)。
文摘Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.
基金funded by the Shanghai Municipal Science and Technology Major Project(2018SHZDZX01)of Zhang Jiang Laboratory and Shanghai Center for Brain Science and Brain-Inspired TechnologyShanghai Rising Star Program(21QC1400900)Tongji–Westwell Autonomous Vehicle Joint Lab Project。
文摘Through vehicle-to-vehicle(V2V)communication,autonomizing a vehicle platoon can significantly reduce the distance between vehicles,thereby reducing air resistance and improving road traffic efficiency.The gradual maturation of platoon control technology is enabling vehicle platoons to achieve basic driving functions,thereby permitting large-scale vehicle platoon scheduling and planning,which is essential for industrialized platoon applications and generates significant economic benefits.Scheduling and planning are required in many aspects of vehicle platoon operation;here,we outline the advantages and challenges of a number of the most important applications,including platoon formation scheduling,lane-change planning,passing traffic light scheduling,and vehicle resource allocation.This paper’s primary objective is to integrate current independent platoon scheduling and planning techniques into an integrated architecture to meet the demands of large-scale platoon applications.To this end,we first summarize the general techniques of vehicle platoon scheduling and planning,then list the primary scenarios for scheduling and planning technique application,and finally discuss current challenges and future development trends in platoon scheduling and planning.We hope that this paper can encourage related platoon researchers to conduct more systematic research and integrate multiple platoon scheduling and planning technologies and applications.
文摘In the intelligent transportation system, the autonomous vehicle platoon is a promising concept for addressing traffic congestion problems. However, under certain conditions, the platoon’s advantage cannot be properly developed, especially when stopping for electronic toll collection (ETC) to pay the toll fee using the highway. This study proposes a software architectural platform that enables connected automated vehicles to reserve a grid-based alternative approach to replace current highway toll collection systems. A planned travel route is reserved in advance by a connected automated vehicle in a platoon, and travel is based on reservation information. We use driving information acquired by communication mechanisms installed in connected automated vehicles to develop a dynamic map platform that collects highway toll tax based on reserving spatio-temporal grids. Spatio-temporal sections are developed by dividing space and time into equal grids and assigning a certain road tax rate. The results of the performance evaluation reveal that the proposed method appropriately reserves the specified grids and collects toll taxes accurately based on a spatio-temporal grid with minimal communication time and no data package loss. Likely, using the proposed method to mediate driving on a one-kilometer route takes an average of 36.5 seconds, as compared to ETC and the combination of ETC and freeway road lane methods, which take 46.6 and 53.8 seconds, respectively, for 1000 vehicles. Consequently, our proposed method’s travel time improvements will reduce congestion by more effectively exploiting road capacity as well as enhance the number of platoons while providing non-stoppable travel for autonomous vehicles.
基金supported in part by Australian Research Council Discovery Early Career Researcher Award(DE210100273)。
文摘Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumption and vehicle emissions.A fundamental issue in CAVs is platooning control that empowers a convoy of CAVs to be cooperatively maneuvered with desired longitudinal spacings and identical velocities on roads.This paper addresses the issue of resilient and safe platooning control of CAVs subject to intermittent denial-of-service(DoS)attacks that disrupt vehicle-to-vehicle communications.First,a heterogeneous and uncertain vehicle longitudinal dynamic model is presented to accommodate a variety of uncertainties,including diverse vehicle masses and engine inertial delays,unknown and nonlinear resistance forces,and a dynamic platoon leader.Then,a resilient and safe distributed longitudinal platooning control law is constructed with an aim to preserve simultaneous individual vehicle stability,attack resilience,platoon safety and scalability.Furthermore,a numerically efficient offline design algorithm for determining the desired platoon control law is developed,under which the platoon resilience against DoS attacks can be maximized but the anticipated stability,safety and scalability requirements remain preserved.Finally,extensive numerical experiments are provided to substantiate the efficacy of the proposed platooning method.
基金This study was financially supported by the National Natural Science Foundation of China(52072156)the Postdoctoral Foundation of China(2020M682269).
文摘The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take advantage of these developments.Here we consider the case of many vehicles forming a queue,i.e.,vehicles traveling at a predetermined speed and distance apart.While the majority of existing studies on this subject have focused on the influence of the longitudinal vehicle spacing,vehicle speed,and the number of vehicles on aerodynamic drag and fuel economy,this study considers the lateral offset distance of the vehicle queue.The group fuel consumption savings rate is calculated and analyzed.As also demonstrated by experimental results,some aerodynamic benefits exist.Moreover,the fuel consumption saving rate of the vehicle queue decreases as the lateral offset distance increases.
基金supported by the National Natural Science Foundation of China(Grant Nos.61273107 and 61573077)Dalian Leading Talent(Grant No.841252)
文摘This paper investigates the problem of fuel-efficient and safe control of autonomous vehicle platoons. We present a two-part hierarchical control method that can guarantee platoon stability with minimal fuel consumption. The first part vehicle controller is derived in the context of receding horizon optimal control by constructing and solving an optimization problem of overall fuel consumption. The Second part platoon controller is a complementation of the first part, which is given on the basis of platoon stability analysis. The effectiveness of the presented platoon control method is demonstrated by both numerical simulations and experiments with laboratory-scale Arduino cars.
基金the National Key Research and Development Program of China(2021YFB2501803)the National Natural Science Foundation of China(52172384,52002126,52102394)+2 种基金Hunan Provincial Natural Science Foundation of China(2021JJ40065)the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(61775006)the Fundamental Research Funds for the Central Universities。
文摘As one of the typical applications of connected vehicles(CVs),the vehicle platoon control technique has been proven to have the advantages of reducing emissions,improving traffic throughout and driving safety.In this paper,a unified hierarchical framework is designed for cooperative control of CVs with both heterogeneous model parameters and structures.By separating neighboring information interaction from local dynamics control,the proposed framework is designed to contain an upper-level observing layer and a lower-level tracking control layer,which helps address the heterogeneity in vehicle parameters and structures.Within the proposed framework,an observer is designed for following vehicles to observe the leading vehicle's states using neighboring communication,while a tracking controller is designed to track the observed leading vehicle using local feedback control.Closed-loop stability in the absence and presence of communication time delay is analyzed,and the observer is further extended to a finite time convergent one to address string stability under general communication topology.Numerical simulation and field experiment verify the effectiveness of the proposed method.
基金supported in part by National Key Research and Development Project under Grant 2020YFB1807204in part by the National Natural Science Foundation of China under Grant U2001213,61971191+2 种基金in part by the Beijing Natural Science Foundation under Grant L201011in part by the Key project of Natural Science Foundation of Jiangxi Province under Grant 20202ACBL202006in part by the Science and Technology Foundation of Jiangxi Province(20202BCD42010).
文摘Inspired by mobile edge computing(MEC),edge learning has gained a momentum by directly performing model training at network edge without sending massive data to a centralized data center.However,the quality of model training will be affected by the limited communication and computing resources of network edge.In this paper,how to improve the training performance of a federated learning system aided by intelligent reflecting surface(IRS)over vehicle platooning networks is studied,where multiple platoons train a shared federated learning model.Multi-platoon cooperation can alleviate the pressure of data processing caused by the limited computing resources of single platoon.Meanwhile,IRS can enhance the inter-platoon communication in a cost-effective and energy-efficient manner.Firstly,the federated learning optimization problem of maximizing the learning accuracy is formulated by jointing platoon scheduling,bandwidth allocation and phase shifts at the IRS to maximize the number of scheduled platoon.Specif-ically,in the proposed learning architecture each platoon updates the learning model with its own data and uploads it to the global model through IRS-based wireless networks.Then,a method based on sequential optimization algorithm(SOA)and a group-based optimization method are analyzed for single IRS aided and large-scale IRS aided commu-nication,respectively.Finally,a platoon scheduling scheme is designed based on the communication reliability and computing reliability of platoons.Simulation results demonstrate that large-scale IRS assisted communication can effectively improve the reliability of multi-user communication networks.The scheduling scheme based on learning reliability balances the communication performance and computing performance of platoons.
基金supported in by National Natural Science Foundation of China(No.62003054,52372406)Key Research and Development Program of Shaanxi Province(Nos.2023-YBGY398)Fundamental Research Funds for the Central Universities(No.300102320109)。
文摘Due to the limited bandwidth and transmission congestion of the vehicle platoon's communication,it is inevitable to induce time delay,which significantly degrades the control performance of the vehicle platoon,even resulting in instability.This paper focuses on analyzing the internal stability under generic communication topologies and presents a method of computing the exact time delay margin(ETDM).The proposed method can offer a necessary and sufficient internal stability condition with no conservatism.Firstly,to reduce the analytical complexity and computational burden elegantly,we decompose the closed-loop platoon dynamics into a set of individual subsystems via similarity transformation and matrix factorization.This decomposition approach is applicable for any general communication topology.Secondly,an explicit formula is deduced to compute the ETDM by surveying the characteristic roots'distribution of all these individual subsystems.It is further demonstrated that only the positive purely imaginary roots need to be considered to compute the ETDM.Finally,simulations are conducted to demonstrate the effectiveness of the theoretical claims.
基金supported in part by the Fundamental Research Funds for the Central Universities,CHD,under grant 300102243713in part by the National Natural Science Foundation of China under grant 61973045+2 种基金in part by the Natural Science Basic Research Program of Shaanxi Province under grant 2023-JC-JQ-45in part by the Natural Science Basic Research Program of Shaanxi under grant 2023-JC-QN-0667in part by the Fundamental Research Funds for the Central Universities,CHD,under grant 300102242102。
文摘Based on the four-element model,this paper reviewed the important research progress in vehicle platoon,compared the advantages and disadvantages of different models in each element longitudinally,and summarized the linkage between each element horizontally.The stability criteria are briefly reviewed from three dimensions:local stability,string stability,and traffic flow stability.The impact of communication delay on vehicle platoon is quantitatively summarized from two aspects:the variation of controller gains and the variation of headway time values.Aiming at the inevitable communication delay in vehicle platoon,the compensation strategies are analyzed from five levels.(1)Optimizing the communication network structure.(2)Reconstructing acceleration information.(3)Tuning controller gains.(4)Constructing a multi-branch selection structure.(5)Improving the controller.The results show that,although these compensation strategies can alleviate the negative impact of communication delay to a certain extent,they also have some defects such as difficulty in adapting to complex and various real road conditions,poor accuracy and real-time performance,insufficient security,and limited application scenarios.It is necessary to further improve the accuracy and real-time performance of the device,design an encrypted and scalable network architecture to ensure communication security and adaptability,and conduct further real vehicle testing.
基金the National Natural Science Foundation of China under Grant No.71971140the Soft Science Research Project of Shanghai No.22692194500the Pujiang Program under Grant No.21PJC085.
文摘Purpose–This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane(CLL)intersections.Design/methodology/approach–The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness.The proposed model is cast into a mixed-integer linear programming problem and then solved by the branch-and-bound technique.Findings–The proposed model has a promising control effect under different geometric controlled conditions.Moreover,the proposed model performs robustly under various safety time headways,lengths of the CLL and green times of the main signal.Originality/value–This study proposed a centralized optimal control model for automated left-turn platoon at CLL intersections.The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness。