期刊文献+
共找到4,062篇文章
< 1 2 204 >
每页显示 20 50 100
A Real-Time Small Target Vehicle Detection Algorithm with an Improved YOLOv5m Network Model 被引量:1
1
作者 Yaoyao Du Xiangkui Jiang 《Computers, Materials & Continua》 SCIE EI 2024年第1期303-327,共25页
To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight arc... To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight architecture based on You Only Look Once(YOLO)v5m.Firstly,a lightweight upsampling operator called Content-Aware Reassembly of Features(CARAFE)is introduced in the feature fusion layer of the network to maximize the extraction of deep-level features for small target vehicles,reducing the missed detection rate and false detection rate.Secondly,a new prediction layer for tiny targets is added,and the feature fusion network is redesigned to enhance the detection capability for small targets.Finally,this paper applies L1 regularization to train the improved network,followed by pruning and fine-tuning operations to remove redundant channels,reducing computational and parameter complexity and enhancing the detection efficiency of the network.Training is conducted on the VisDrone2019-DET dataset.The experimental results show that the proposed algorithmreduces parameters and computation by 63.8% and 65.8%,respectively.The average detection accuracy improves by 5.15%,and the detection speed reaches 47 images per second,satisfying real-time requirements.Compared with existing approaches,including YOLOv5m and classical vehicle detection algorithms,our method achieves higher accuracy and faster speed for real-time detection of small target vehicles in edge computing. 展开更多
关键词 vehicle detection YOLOv5m small target channel pruning CARAFE
下载PDF
Real-Time Front Vehicle Detection Algorithm Based on Local Feature Tracking Method 被引量:1
2
作者 Jae-hyoung YU Young-joon HAN Hern-soo HAHN 《Journal of Measurement Science and Instrumentation》 CAS 2011年第3期244-246,共3页
This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of... This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of the vehicle are vertical and horizontal edges,shadow and symmetry.By comparing local features using the fixed window size,the features in the continuous images are tracked.A robust and fast Haarlike mask is used for detecting vertical and horizontal edges,and shadow is extracted by histogram equalization,and the sliding window method is used to compare both side templates of the detected candidates for extracting symmetry.The features for tracking are vertical edges,and histogram is used to compare location of the peak and magnitude of the edges.The method using local feature tracking in the continuous images is more robust for detecting vehicle than the method using single image,and the proposed algorithm is evaluated by continuous images obtained on the expressway and downtown.And it can be performed on real-time through applying it to the embedded system. 展开更多
关键词 vehicle detection object tracking real-time algorithm Haarlike edge detection
下载PDF
Real-Time Detection and Instance Segmentation of Strawberry in Unstructured Environment
3
作者 Chengjun Wang Fan Ding +4 位作者 Yiwen Wang Renyuan Wu Xingyu Yao Chengjie Jiang Liuyi Ling 《Computers, Materials & Continua》 SCIE EI 2024年第1期1481-1501,共21页
The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-r... The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-ronment is a challenging task.Current instance segmentation algorithms for strawberries suffer from issues such as poor real-time performance and low accuracy.To this end,the present study proposes an Efficient YOLACT(E-YOLACT)algorithm for strawberry detection and segmentation based on the YOLACT framework.The key enhancements of the E-YOLACT encompass the development of a lightweight attention mechanism,pyramid squeeze shuffle attention(PSSA),for efficient feature extraction.Additionally,an attention-guided context-feature pyramid network(AC-FPN)is employed instead of FPN to optimize the architecture’s performance.Furthermore,a feature-enhanced model(FEM)is introduced to enhance the prediction head’s capabilities,while efficient fast non-maximum suppression(EF-NMS)is devised to improve non-maximum suppression.The experimental results demonstrate that the E-YOLACT achieves a Box-mAP and Mask-mAP of 77.9 and 76.6,respectively,on the custom dataset.Moreover,it exhibits an impressive category accuracy of 93.5%.Notably,the E-YOLACT also demonstrates a remarkable real-time detection capability with a speed of 34.8 FPS.The method proposed in this article presents an efficient approach for the vision system of a strawberry-picking robot. 展开更多
关键词 YOLACT real-time detection instance segmentation attention mechanism STRAWBERRY
下载PDF
Deep Transfer Learning Techniques in Intrusion Detection System-Internet of Vehicles: A State-of-the-Art Review
4
作者 Wufei Wu Javad Hassannataj Joloudari +8 位作者 Senthil Kumar Jagatheesaperumal Kandala N.V.P.SRajesh Silvia Gaftandzhieva Sadiq Hussain Rahimullah Rabih Najibullah Haqjoo Mobeen Nazar Hamed Vahdat-Nejad Rositsa Doneva 《Computers, Materials & Continua》 SCIE EI 2024年第8期2785-2813,共29页
The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accide... The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accident prevention,cost reduction,and enhanced traffic regularity.Despite these benefits,IoV technology is susceptible to cyber-attacks,which can exploit vulnerabilities in the vehicle network,leading to perturbations,disturbances,non-recognition of traffic signs,accidents,and vehicle immobilization.This paper reviews the state-of-the-art achievements and developments in applying Deep Transfer Learning(DTL)models for Intrusion Detection Systems in the Internet of Vehicles(IDS-IoV)based on anomaly detection.IDS-IoV leverages anomaly detection through machine learning and DTL techniques to mitigate the risks posed by cyber-attacks.These systems can autonomously create specific models based on network data to differentiate between regular traffic and cyber-attacks.Among these techniques,transfer learning models are particularly promising due to their efficacy with tagged data,reduced training time,lower memory usage,and decreased computational complexity.We evaluate DTL models against criteria including the ability to transfer knowledge,detection rate,accurate analysis of complex data,and stability.This review highlights the significant progress made in the field,showcasing how DTL models enhance the performance and reliability of IDS-IoV systems.By examining recent advancements,we provide insights into how DTL can effectively address cyber-attack challenges in IoV environments,ensuring safer and more efficient transportation networks. 展开更多
关键词 Cyber-attacks internet of things internet of vehicles intrusion detection system
下载PDF
Real-Time Object Detection and Face Recognition Application for the Visually Impaired
5
作者 Karshiev Sanjar Soyoun Bang +1 位作者 SookheeRyue Heechul Jung 《Computers, Materials & Continua》 SCIE EI 2024年第6期3569-3583,共15页
The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional appro... The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional approaches primarily focus on broad applications such as wayfinding,obstacle detection,and fall prevention.However,there is a notable discrepancy in applying these technologies to more specific scenarios,like identifying distinct food crop types or recognizing faces.This study proposes a real-time application designed for visually impaired individuals,aiming to bridge this research-application gap.It introduces a system capable of detecting 20 different food crop types and recognizing faces with impressive accuracies of 83.27%and 95.64%,respectively.These results represent a significant contribution to the field of assistive technologies,providing visually impaired users with detailed and relevant information about their surroundings,thereby enhancing their mobility and ensuring their safety.Additionally,it addresses the vital aspects of social engagements,acknowledging the challenges faced by visually impaired individuals in recognizing acquaintances without auditory or tactile signals,and highlights recent developments in prototype systems aimed at assisting with face recognition tasks.This comprehensive approach not only promises enhanced navigational aids but also aims to enrich the social well-being and safety of visually impaired communities. 展开更多
关键词 Artificial intelligence deep learning real-time object detection application
下载PDF
A New Vehicle Detection Framework Based on Feature-Guided in the Road Scene
6
作者 Tianmin Deng Xiyue Zhang Xinxin Cheng 《Computers, Materials & Continua》 SCIE EI 2024年第1期533-549,共17页
Vehicle detection plays a crucial role in the field of autonomous driving technology.However,directly applying deep learning-based object detection algorithms to complex road scene images often leads to subpar perform... Vehicle detection plays a crucial role in the field of autonomous driving technology.However,directly applying deep learning-based object detection algorithms to complex road scene images often leads to subpar performance and slow inference speeds in vehicle detection.Achieving a balance between accuracy and detection speed is crucial for real-time object detection in real-world road scenes.This paper proposes a high-precision and fast vehicle detector called the feature-guided bidirectional pyramid network(FBPN).Firstly,to tackle challenges like vehicle occlusion and significant background interference,the efficient feature filtering module(EFFM)is introduced into the deep network,which amplifies the disparities between the features of the vehicle and the background.Secondly,the proposed global attention localization module(GALM)in the model neck effectively perceives the detailed position information of the target,improving both the accuracy and inference speed of themodel.Finally,the detection accuracy of small-scale vehicles is further enhanced through the utilization of a four-layer feature pyramid structure.Experimental results show that FBPN achieves an average precision of 60.8% and 97.8% on the BDD100K and KITTI datasets,respectively,with inference speeds reaching 344.83 frames/s and 357.14 frames/s.FBPN demonstrates its effectiveness and superiority by striking a balance between detection accuracy and inference speed,outperforming several state-of-the-art methods. 展开更多
关键词 Driverless car vehicle detection channel attention mechanism deep learning
下载PDF
A Fault Detection Method for Electric Vehicle Battery System Based on Bayesian Optimization SVDD Considering a Few Faulty Samples
7
作者 Miao Li Fanyong Cheng +2 位作者 Jiong Yang Maxwell Mensah Duodu Hao Tu 《Energy Engineering》 EI 2024年第9期2543-2568,共26页
Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersp... Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersphere boundary only describes the distribution of unlabeled samples,while the distribution of faulty samples cannot be effectively described and easilymisses detecting faulty data due to the imbalance of sample distribution.Meanwhile,selecting parameters is critical to the detection performance,and empirical parameterization is generally timeconsuming and laborious and may not result in finding the optimal parameters.Therefore,this paper proposes a semi-supervised data-driven method based on which the SVDD algorithm is improved and achieves excellent fault detection performance.By incorporating faulty samples into the underlying SVDD model,training deals better with the problem of missing detection of faulty samples caused by the imbalance in the distribution of abnormal samples,and the hypersphere boundary ismodified to classify the samplesmore accurately.The Bayesian Optimization NSVDD(BO-NSVDD)model was constructed to quickly and accurately optimize hyperparameter combinations.In the experiments,electric vehicle operation data with four common fault types are used to evaluate the performance with other five models,and the results show that the BO-NSVDD model presents superior detection performance for each type of fault data,especially in the imperceptible early and minor faults,which has seen very obvious advantages.Finally,the strong robustness of the proposed method is verified by adding different intensities of noise in the dataset. 展开更多
关键词 Fault detection vehicle battery system lithium batteries fault samples
下载PDF
Improved YOLOv8s-Based Night Vehicle Detection
8
作者 WAN Xin-ei SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期76-85,共10页
With the gradual development of automatic driving technology,people’s attention is no longer limited to daily automatic driving target detection.In response to the problem that it is difficult to achieve fast and acc... With the gradual development of automatic driving technology,people’s attention is no longer limited to daily automatic driving target detection.In response to the problem that it is difficult to achieve fast and accurate detection of visual targets in complex scenes of automatic driving at night,a detection algorithm based on improved YOLOv8s was proposed.Firsly,By adding Triplet Attention module into the lower sampling layer of the original model,the model can effectively retain and enhance feature information related to target detection on the lower-resolution feature map.This enhancement improved the robustness of the target detection network and reduced instances of missed detections.Secondly,the Soft-NMS algorithm was introduced to address the challenges of dealing with dense targets,overlapping objects,and complex scenes.This algorithm effectively reduced false and missed positives,thereby improved overall detection performance when faced with highly overlapping detection results.Finally,the experimental results on the MPDIoU loss function dataset showed that compared with the original model,the improved method,in which mAP and accuracy are increased by 2.9%and 2.8%respectively,can achieve better detection accuracy and speed in night vehicle detection.It can effectively improve the problem of target detection in night scenes. 展开更多
关键词 vehicle detection Yolov8 Attention mechanism
下载PDF
Efficient and Cost-Effective Vehicle Detection in Foggy Weather for Edge/Fog-Enabled Traffic Surveillance and Collision Avoidance Systems
9
作者 Naeem Raza Muhammad Asif Habib +3 位作者 Mudassar Ahmad Qaisar Abbas Mutlaq BAldajani Muhammad Ahsan Latif 《Computers, Materials & Continua》 SCIE EI 2024年第10期911-931,共21页
Vision-based vehicle detection in adverse weather conditions such as fog,haze,and mist is a challenging research area in the fields of autonomous vehicles,collision avoidance,and Internet of Things(IoT)-enabled edge/f... Vision-based vehicle detection in adverse weather conditions such as fog,haze,and mist is a challenging research area in the fields of autonomous vehicles,collision avoidance,and Internet of Things(IoT)-enabled edge/fog computing traffic surveillance and monitoring systems.Efficient and cost-effective vehicle detection at high accuracy and speed in foggy weather is essential to avoiding road traffic collisions in real-time.To evaluate vision-based vehicle detection performance in foggy weather conditions,state-of-the-art Vehicle Detection in Adverse Weather Nature(DAWN)and Foggy Driving(FD)datasets are self-annotated using the YOLO LABEL tool and customized to four vehicle detection classes:cars,buses,motorcycles,and trucks.The state-of-the-art single-stage deep learning algorithms YOLO-V5,and YOLO-V8 are considered for the task of vehicle detection.Furthermore,YOLO-V5s is enhanced by introducing attention modules Convolutional Block Attention Module(CBAM),Normalized-based Attention Module(NAM),and Simple Attention Module(SimAM)after the SPPF module as well as YOLO-V5l with BiFPN.Their vehicle detection accuracy parameters and running speed is validated on cloud(Google Colab)and edge(local)systems.The mAP50 score of YOLO-V5n is 72.60%,YOLOV5s is 75.20%,YOLO-V5m is 73.40%,and YOLO-V5l is 77.30%;and YOLO-V8n is 60.20%,YOLO-V8s is 73.50%,YOLO-V8m is 73.80%,and YOLO-V8l is 72.60%on DAWN dataset.The mAP50 score of YOLO-V5n is 43.90%,YOLO-V5s is 40.10%,YOLO-V5m is 49.70%,and YOLO-V5l is 57.30%;and YOLO-V8n is 41.60%,YOLO-V8s is 46.90%,YOLO-V8m is 42.90%,and YOLO-V8l is 44.80%on FD dataset.The vehicle detection speed of YOLOV5n is 59 Frame Per Seconds(FPS),YOLO-V5s is 47 FPS,YOLO-V5m is 38 FPS,and YOLO-V5l is 30 FPS;and YOLO-V8n is 185 FPS,YOLO-V8s is 109 FPS,YOLO-V8m is 72 FPS,and YOLO-V8l is 63 FPS on DAWN dataset.The vehicle detection speed of YOLO-V5n is 26 FPS,YOLO-V5s is 24 FPS,YOLO-V5m is 22 FPS,and YOLO-V5l is 17 FPS;and YOLO-V8n is 313 FPS,YOLO-V8s is 182 FPS,YOLO-V8m is 99 FPS,and YOLO-V8l is 60 FPS on FD dataset.YOLO-V5s,YOLO-V5s variants and YOLO-V5l_BiFPN,and YOLO-V8 algorithms are efficient and cost-effective solution for real-time vision-based vehicle detection in foggy weather. 展开更多
关键词 vehicle detection YOLO-V5 YOLO-V5s variants YOLO-V8 DAWN dataset foggy driving dataset IoT cloud/edge/fog computing
下载PDF
Analyzing the Impact of Scene Transitions on Indoor Camera Localization through Scene Change Detection in Real-Time
10
作者 Muhammad S.Alam Farhan B.Mohamed +2 位作者 Ali Selamat Faruk Ahmed AKM B.Hossain 《Intelligent Automation & Soft Computing》 2024年第3期417-436,共20页
Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance o... Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed.This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence.An annotated image dataset trains the proposed system and predicts the camera pose in real-time.The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera pose.It also recognizes the scene changes during the sequence and evaluates the effects of these changes.This system achieved high accuracy and real-time performance.The scene change detection process was performed using visual rhythm and the proposed recurrent deep architecture,which performed camera pose prediction and scene change impact evaluation.Overall,this study proposed a novel real-time localization system for indoor cameras that detects scene changes and shows how they affect localization performance. 展开更多
关键词 Camera pose estimation indoor camera localization real-time localization scene change detection simultaneous localization and mapping(SLAM)
下载PDF
A CNN-Based Single-Stage Occlusion Real-Time Target Detection Method
11
作者 Liang Liu Nan Yang +4 位作者 Saifei Liu Yuanyuan Cao Shuowen Tian Tiancheng Liu Xun Zhao 《Journal of Intelligent Learning Systems and Applications》 2024年第1期1-11,共11页
Aiming at the problem of low accuracy of traditional target detection methods for target detection in endoscopes in substation environments, a CNN-based real-time detection method for masked targets is proposed. The m... Aiming at the problem of low accuracy of traditional target detection methods for target detection in endoscopes in substation environments, a CNN-based real-time detection method for masked targets is proposed. The method adopts the overall design of backbone network, detection network and algorithmic parameter optimisation method, completes the model training on the self-constructed occlusion target dataset, and adopts the multi-scale perception method for target detection. The HNM algorithm is used to screen positive and negative samples during the training process, and the NMS algorithm is used to post-process the prediction results during the detection process to improve the detection efficiency. After experimental validation, the obtained model has the multi-class average predicted value (mAP) of the dataset. It has general advantages over traditional target detection methods. The detection time of a single target on FDDB dataset is 39 ms, which can meet the need of real-time target detection. In addition, the project team has successfully deployed the method into substations and put it into use in many places in Beijing, which is important for achieving the anomaly of occlusion target detection. 展开更多
关键词 real-time Mask Target CNN (Convolutional Neural Network) Single-Stage detection Multi-Scale Feature Perception
下载PDF
Design of a road vehicle detection system based on monocular vision 被引量:5
12
作者 王海 张为公 蔡英凤 《Journal of Southeast University(English Edition)》 EI CAS 2011年第2期169-173,共5页
In order to decrease vehicle crashes, a new rear view vehicle detection system based on monocular vision is designed. First, a small and flexible hardware platform based on a DM642 digtal signal processor (DSP) micr... In order to decrease vehicle crashes, a new rear view vehicle detection system based on monocular vision is designed. First, a small and flexible hardware platform based on a DM642 digtal signal processor (DSP) micro-controller is built. Then, a two-step vehicle detection algorithm is proposed. In the first step, a fast vehicle edge and symmetry fusion algorithm is used and a low threshold is set so that all the possible vehicles have a nearly 100% detection rate (TP) and the non-vehicles have a high false detection rate (FP), i. e., all the possible vehicles can be obtained. In the second step, a classifier using a probabilistic neural network (PNN) which is based on multiple scales and an orientation Gabor feature is trained to classify the possible vehicles and eliminate the false detected vehicles from the candidate vehicles generated in the first step. Experimental results demonstrate that the proposed system maintains a high detection rate and a low false detection rate under different road, weather and lighting conditions. 展开更多
关键词 vehicle detection monocular vision edge andsymmetry fusion Gabor feature PNN network
下载PDF
Cycle life prediction and match detection in retired electric vehicle batteries 被引量:4
13
作者 周向阳 邹幽兰 +1 位作者 赵光金 杨娟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期3040-3045,共6页
The lifespan models of commercial 18650-type lithium ion batteries (nominal capacity of 1150 mA-h) were presented. The lifespan was extrapolated based on this model. The results indicate that the relationship of cap... The lifespan models of commercial 18650-type lithium ion batteries (nominal capacity of 1150 mA-h) were presented. The lifespan was extrapolated based on this model. The results indicate that the relationship of capacity retention and cycle number can be expressed by Gaussian function. The selecting function and optimal precision were verified through actual match detection and a range of alternating current impedance testing. The cycle life model with high precision (〉99%) is beneficial to shortening the orediction time and cutting the prediction cost. 展开更多
关键词 retired electric vehicle battery life prediction model match detection electrochemical impedance spectroscopy equivalent circuit
下载PDF
Traffic light detection and recognition in intersections based on intelligent vehicle
14
作者 张宁 何铁军 +1 位作者 高朝晖 黄卫 《Journal of Southeast University(English Edition)》 EI CAS 2008年第4期517-521,共5页
To ensure revulsive driving of intelligent vehicles at intersections, a method is presented to detect and recognize the traffic lights. First, the stabling siding at intersections is detected by applying Hough transfo... To ensure revulsive driving of intelligent vehicles at intersections, a method is presented to detect and recognize the traffic lights. First, the stabling siding at intersections is detected by applying Hough transformation. Then, the colors of traffic lights are detected with color space transformation. Finally, self-associative memory is used to recognize the countdown characters of the traffic lights. Test results at 20 real intersections show that the ratio of correct stabling siding recognition reaches up to 90%;and the ratios of recognition of traffic lights and divided characters are 85% and 97%, respectively. The research proves that the method is efficient for the detection of stabling siding and is robust enough to recognize the characters from images with noise and broken edges. 展开更多
关键词 intelligent vehicle stabling siding detection traffic lights detection self-associative memory light-emitting diode (LED) characters recognition
下载PDF
Vehicle detection method for expressway by MPEG compressed domain
15
作者 何铁军 张宁 +1 位作者 高朝晖 黄卫 《Journal of Southeast University(English Edition)》 EI CAS 2008年第4期522-527,共6页
A method which extracts traffic information from an MPEG-2 compressed video is proposed. According to the features of vehicle motion, the motion vector of a macro-block is used to detect moving vehicles in daytime, an... A method which extracts traffic information from an MPEG-2 compressed video is proposed. According to the features of vehicle motion, the motion vector of a macro-block is used to detect moving vehicles in daytime, and a filter algorithm for removing noises of motion vectors is given. As the brightness of the headlights is higher than that of the background in night images, discrete cosine transform (DCT)coefficient of image block is used to detect headlights of vehicles at night, and an algorithm for calculating the DCT coefficients of P-frames is introduced. In order to prevent moving objects outside the expressway and video shot changes from disturbing the detection, a driveway location method and a video-shot-change detection algorithm are suggested. The detection rate is 97.4% in daytime and 95.4% in nighttime by this method. The results prove that this vehicle detection method is effective. 展开更多
关键词 vehicle detection compressed domain discrete cosine transform (DCT) coefficient motion vector
下载PDF
Semantic Segmentation and YOLO Detector over Aerial Vehicle Images
16
作者 Asifa Mehmood Qureshi Abdul Haleem Butt +5 位作者 Abdulwahab Alazeb Naif Al Mudawi Mohammad Alonazi Nouf Abdullah Almujally Ahmad Jalal Hui Liu 《Computers, Materials & Continua》 SCIE EI 2024年第8期3315-3332,共18页
Intelligent vehicle tracking and detection are crucial tasks in the realm of highway management.However,vehicles come in a range of sizes,which is challenging to detect,affecting the traffic monitoring system’s overa... Intelligent vehicle tracking and detection are crucial tasks in the realm of highway management.However,vehicles come in a range of sizes,which is challenging to detect,affecting the traffic monitoring system’s overall accuracy.Deep learning is considered to be an efficient method for object detection in vision-based systems.In this paper,we proposed a vision-based vehicle detection and tracking system based on a You Look Only Once version 5(YOLOv5)detector combined with a segmentation technique.The model consists of six steps.In the first step,all the extracted traffic sequence images are subjected to pre-processing to remove noise and enhance the contrast level of the images.These pre-processed images are segmented by labelling each pixel to extract the uniform regions to aid the detection phase.A single-stage detector YOLOv5 is used to detect and locate vehicles in images.Each detection was exposed to Speeded Up Robust Feature(SURF)feature extraction to track multiple vehicles.Based on this,a unique number is assigned to each vehicle to easily locate them in the succeeding image frames by extracting them using the feature-matching technique.Further,we implemented a Kalman filter to track multiple vehicles.In the end,the vehicle path is estimated by using the centroid points of the rectangular bounding box predicted by the tracking algorithm.The experimental results and comparison reveal that our proposed vehicle detection and tracking system outperformed other state-of-the-art systems.The proposed implemented system provided 94.1%detection precision for Roundabout and 96.1%detection precision for Vehicle Aerial Imaging from Drone(VAID)datasets,respectively. 展开更多
关键词 Semantic segmentation YOLOv5 vehicle detection and tracking Kalman filter SURF
下载PDF
Vehicle detection based on information fusion of vehicle symmetrical contour and license plate position 被引量:1
17
作者 连捷 赵池航 +2 位作者 张百灵 何杰 党倩 《Journal of Southeast University(English Edition)》 EI CAS 2012年第2期240-244,共5页
An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the ve... An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the vehicle contour in an image is. first detected, and then the vertical and the horizontal symmetry axes of the license plate are detected using the symmetry axis of the vehicle contour as a reference. The vehicle location in an image is determined using license plate symmetry axes and the vertical and the horizontal projection maps of the vehicle edge image. A dataset consisting of 450 images (15 classes of vehicles) is used to test the proposed method. The experimental results indicate that compared with the vehicle contour-based, the license plate location-based, the vehicle texture-based and the Gabor feature-based methods, the proposed method is the best with a detection accuracy of 90.7% and an elapsed time of 125 ms. 展开更多
关键词 vehicle detection symmetrical contour license plate position information fusion
下载PDF
Real-time image processing and display in object size detection based on VC++ 被引量:2
18
作者 翟亚宇 潘晋孝 +1 位作者 刘宾 陈平 《Journal of Measurement Science and Instrumentation》 CAS 2014年第4期40-45,共6页
Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achie... Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achieve a real-time image pro- cessing for the moving objects. Firstly, the median filtering, gain calibration, image segmentation, image binarization, cor- ner detection and edge fitting are employed to process the images of the moving objects to make the image close to the real object. Then, the processed images are simultaneously displayed on a real-time basis to make it easier to analyze, understand and identify them, and thus it reduces the computation complexity. Finally, human-computer interaction (HCI)-friendly in- terface based on VC ++ is designed to accomplish the digital logic transform, image processing and real-time display of the objects. The experiment shows that the proposed algorithm and software design have better real-time performance and accu- racy which can meet the industrial needs. 展开更多
关键词 size detection real-time image processing and display gain calibration edge fitting
下载PDF
A Vehicle Detection Method for Aerial Image Based on YOLO 被引量:13
19
作者 Junyan Lu Chi Ma +4 位作者 Li Li Xiaoyan Xing Yong Zhang Zhigang Wang Jiuwei Xu 《Journal of Computer and Communications》 2018年第11期98-107,共10页
With the application of UAVs in intelligent transportation systems, vehicle detection for aerial images has become a key engineering technology and has academic research significance. In this paper, a vehicle detectio... With the application of UAVs in intelligent transportation systems, vehicle detection for aerial images has become a key engineering technology and has academic research significance. In this paper, a vehicle detection method for aerial image based on YOLO deep learning algorithm is presented. The method integrates an aerial image dataset suitable for YOLO training by pro-cessing three public aerial image datasets. Experiments show that the training model has a good performance on unknown aerial images, especially for small objects, rotating objects, as well as compact and dense objects, while meeting the real-time requirements. 展开更多
关键词 vehicle detection AERIAL IMAGE YOLO VEDAI COWC DOTA
下载PDF
Real-Time Detection of Cracks on Concrete Bridge Decks Using Deep Learning in the Frequency Domain 被引量:10
20
作者 Qianyun Zhang Kaveh Barri +1 位作者 Saeed K.Babanajad Amir H.Alavi 《Engineering》 SCIE EI 2021年第12期1786-1796,共11页
This paper presents a vision-based crack detection approach for concrete bridge decks using an integrated one-dimensional convolutional neural network(1D-CNN)and long short-term memory(LSTM)method in the image frequen... This paper presents a vision-based crack detection approach for concrete bridge decks using an integrated one-dimensional convolutional neural network(1D-CNN)and long short-term memory(LSTM)method in the image frequency domain.The so-called 1D-CNN-LSTM algorithm is trained using thousands of images of cracked and non-cracked concrete bridge decks.In order to improve the training efficiency,images are first transformed into the frequency domain during a preprocessing phase.The algorithm is then calibrated using the flattened frequency data.LSTM is used to improve the performance of the developed network for long sequence data.The accuracy of the developed model is 99.05%,98.9%,and 99.25%,respectively,for training,validation,and testing data.An implementation framework is further developed for future application of the trained model for large-scale images.The proposed 1D-CNN-LSTM method exhibits superior performance in comparison with existing deep learning methods in terms of accuracy and computation time.The fast implementation of the 1D-CNN-LSTM algorithm makes it a promising tool for real-time crack detection. 展开更多
关键词 Crack detection Concrete bridge deck Deep learning real-time
下载PDF
上一页 1 2 204 下一页 到第
使用帮助 返回顶部