To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(...To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(MEMS) inertial sensors, a novel interacting multiple model-based two-stage Kalman filter(IMM-TSKF) is proposed to adapt to the uncertain inertial sensor noise. Three bias filters are developed based on different noise characteristics to cover a wide range of noise levels. Then, an accurate estimation of biases is calculated by the interacting multiple model algorithm to correct the bias-free filter. Thus, the vehicle positioning system can achieve good performance when suffering from uncertain inertial sensor noise. The experimental results indicate that the average position error of the proposed IMMTSKF is 25% lower than that of the general TSKF.展开更多
This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environment...This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environments with underwater obstacles are computed using a numerical solution procedure based on an A* algorithm. The USV is modeled with a circular shape in 2 degrees of freedom(surge and yaw). In this paper, two-dimensional(2-D) underwater obstacle avoidance and the robust real-time path re-planning technique for actual USV using multi-beam FLS are developed. Our real-time path re-planning algorithm has been tested to regenerate the optimal path for several updated frames in the field of view of the sonar with a proper update frequency of the FLS. The performance of the proposed method was verified through simulations, and sea experiments. For simulations, the USV model can avoid both a single stationary obstacle, multiple stationary obstacles and moving obstacles with the near-optimal trajectory that are performed both in the vehicle and the world reference frame. For sea experiments, the proposed method for an underwater obstacle avoidance system is implemented with a USV test platform. The actual USV is automatically controlled and succeeded in its real-time avoidance against the stationary undersea obstacle in the field of view of the FLS together with the Global Positioning System(GPS) of the USV.展开更多
The current research of real-time observation for vehicle roll steer angle and compliance steer angle(both of them comprehensively referred as the additional steer angle in this paper) mainly employs the linear vehi...The current research of real-time observation for vehicle roll steer angle and compliance steer angle(both of them comprehensively referred as the additional steer angle in this paper) mainly employs the linear vehicle dynamic model, in which only the lateral acceleration of vehicle body is considered. The observation accuracy resorting to this method cannot meet the requirements of vehicle real-time stability control, especially under extreme driving conditions. The paper explores the solution resorting to experimental method. Firstly, a multi-body dynamic model of a passenger car is built based on the ADAMS/Car software, whose dynamic accuracy is verified by the same vehicle's roadway test data of steady static circular test. Based on this simulation platform, several influencing factors of additional steer angle under different driving conditions are quantitatively analyzed. Then ε-SVR algorithm is employed to build the additional steer angle prediction model, whose input vectors mainly include the sensor information of standard electronic stability control system(ESC). The method of typical slalom tests and FMVSS 126 tests are adopted to make simulation, train model and test model's generalization performance. The test result shows that the influence of lateral acceleration on additional steer angle is maximal (the magnitude up to 1°), followed by the longitudinal acceleration-deceleration and the road wave amplitude (the magnitude up to 0.3°). Moreover, both the prediction accuracy and the calculation real-time of the model can meet the control requirements of ESC This research expands the accurate observation methods of the additional steer angle under extreme driving conditions.展开更多
Electric vehicle charging identification and positioning is critically important to achieving automatic charging.In terms of the problem of automatic charging for electric vehicles,a dual recognition and positioning m...Electric vehicle charging identification and positioning is critically important to achieving automatic charging.In terms of the problem of automatic charging for electric vehicles,a dual recognition and positioning method based on deep learning is proposed.The method is divided into two parts:global recognition and localization and local recognition and localization.In the specific implementation process,the collected pictures of electric vehicle charging attitude are classified and labeled.It is trained with the improved YOLOv4 networkmodel and the corresponding detectionmodel is obtained.The contour of the electric vehicle is extracted by the BiSeNet semantic segmentation algorithm.The minimum external rectangle is used for positioning of the electric vehicle.Based on the location relationship between the charging port and the electric vehicle,the rough location information of the charging port is obtained.The automatic charging equipment moves to the vicinity of the charging port,and the camera near the charging gun collects pictures of the charging port.The model is detected by the Hough circle,the KM algorithmis used for featurematching,and the homography matrix is used to solve the attitude.The results show that the dual identification and location method based on the improved YOLOv4 algorithm proposed in this paper can accurately locate the charging port.The accuracy of the charging connection can reach 80%.It provides an effective way to solve the problems of automatic charging identification and positioning of electric vehicles and has strong engineering practical value.展开更多
Autonomous driving technology has made a lot of outstanding achievements with deep learning,and the vehicle detection and classification algorithm has become one of the critical technologies of autonomous driving syst...Autonomous driving technology has made a lot of outstanding achievements with deep learning,and the vehicle detection and classification algorithm has become one of the critical technologies of autonomous driving systems.The vehicle instance segmentation can perform instance-level semantic parsing of vehicle information,which is more accurate and reliable than object detection.However,the existing instance segmentation algorithms still have the problems of poor mask prediction accuracy and low detection speed.Therefore,this paper proposes an advanced real-time instance segmentation model named FIR-YOLACT,which fuses the ICIoU(Improved Complete Intersection over Union)and Res2Net for the YOLACT algorithm.Specifically,the ICIoU function can effectively solve the degradation problem of the original CIoU loss function,and improve the training convergence speed and detection accuracy.The Res2Net module fused with the ECA(Efficient Channel Attention)Net is added to the model’s backbone network,which improves the multi-scale detection capability and mask prediction accuracy.Furthermore,the Cluster NMS(Non-Maximum Suppression)algorithm is introduced in the model’s bounding box regression to enhance the performance of detecting similarly occluded objects.The experimental results demonstrate the superiority of FIR-YOLACT to the based methods and the effectiveness of all components.The processing speed reaches 28 FPS,which meets the demands of real-time vehicle instance segmentation.展开更多
Black carbon(BC)is considered the second largest anthropogenic climate forcer,but the radiative effects of BC are highly correlated with its combustion sources.On-road vehicles are an important source of anthropogenic...Black carbon(BC)is considered the second largest anthropogenic climate forcer,but the radiative effects of BC are highly correlated with its combustion sources.On-road vehicles are an important source of anthropogenic BC.However,there are major uncertainties in the estimates of the BC emissions from on-road light-duty passenger vehicles(LDPVs),and results obtained with the portable emissions measurement system(PEMS)method are particularly lacking.We developed a PEMS platform and evaluated the on-road BC emissions from ten in-use LDPVs.We demonstrated that the BC emission factors(EFs)of gasoline direction injection(GDI)engine vehicles range from 1.10 to 1.56 mg.km^(-1),which are higher than the EFs of port fuel injection(PFI)engine vehicles(0.10–0.17 mg.km^(-1))by a factor of 11.The BC emissions during the cold-start phase contributed 2%–33%to the total emissions.A strong correlation(R^(2)=0.70)was observed between the relative BC EFs and average vehicle speed,indicating that traffic congestion alleviation could effectively mitigate BC emissions.Moreover,BC and particle number(PN)emissions were linearly correlated(R^(2)=0.90),and compared to PFI engine vehicles,the instantaneous PN-to-BC emission rates of GDI engine vehicles were less sensitive to vehicle specific power-to-velocity(VSPV)increase in all speed ranges.展开更多
As the basis of location-based services(LBS),positioning is one of the most essential parts in intelligent transportation systems(ITS).Although global positioning system(GPS)has been widely used in vehicle positioning...As the basis of location-based services(LBS),positioning is one of the most essential parts in intelligent transportation systems(ITS).Although global positioning system(GPS)has been widely used in vehicle positioning,it can not achieve lane level positioning accuracy.Motivated by the mature ranging technologies such as radar and ultra-wideband(UWB),several cooperative positioning(CP)methods have been proposed to enhance the accuracy and robustness of GPS.In this paper,we proposed a twostage CP algorithm that combines multidimensional scaling(MDS)and Procrustes analysis for vehicles with GPS information.Specifically,the optimized MDS based on the scaling by majorizing a complicated function(SMACOF)algorithm is first proposed to get the relative coordinates of vehicles which can tackle measurements of different error distributions,then Procrustes analysis is carried out to transform the relative coordinates of vehicles to their absolute coordinates based on GPS information.All the computations are performed at the mobile edge computing node(MECN)for the request of ultra-reliable and low latency communications(URLLC).Simulation results validate that the proposed algorithm can greatly improve the positioning accuracy and robustness for vehicles.展开更多
This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of...This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of the vehicle are vertical and horizontal edges,shadow and symmetry.By comparing local features using the fixed window size,the features in the continuous images are tracked.A robust and fast Haarlike mask is used for detecting vertical and horizontal edges,and shadow is extracted by histogram equalization,and the sliding window method is used to compare both side templates of the detected candidates for extracting symmetry.The features for tracking are vertical edges,and histogram is used to compare location of the peak and magnitude of the edges.The method using local feature tracking in the continuous images is more robust for detecting vehicle than the method using single image,and the proposed algorithm is evaluated by continuous images obtained on the expressway and downtown.And it can be performed on real-time through applying it to the embedded system.展开更多
With the rapid development of vehicular ad hoc network( VANET) technology,VANET applications such as safe driving and emergency rescue demand high position accuracy,but traditional GPS is difficult to meet new accurac...With the rapid development of vehicular ad hoc network( VANET) technology,VANET applications such as safe driving and emergency rescue demand high position accuracy,but traditional GPS is difficult to meet new accuracy requirements. To overcome this limitation,a new vehicle positioning method based on radio frequency identification( RFID) is proposed. First RFID base stations are divided into three categories using fuzzy technology,and then Chan algorithm is used to calculate three vehicles' positions,which are weighed to acquire vehicles' accurate position. This method can effectively overcome the problem that vehicle positioning accuracy is not high resulting from the factors such as ambient noise and base distribution when Chan algorithm is used. Experimental results show that the performance of the proposed method is superior to Chan algorithm and 2-step algorithm based on averaging method,which can satisfy the requirements of vehicle positioning in VANETs.展开更多
Demand for precise vehicle positioning(VP)increases as autonomous vehicles have recently been drawing attention.This paper proposes a scheme for positioning vehicles on the move based on optical camera communication(O...Demand for precise vehicle positioning(VP)increases as autonomous vehicles have recently been drawing attention.This paper proposes a scheme for positioning vehicles on the move based on optical camera communication(OCC)technology in the vehicle-to-infrastructure(V2I)environment.Light-emitting diode(LED)streetlights and vehicle cameras are used as transmitters and receivers respectively.Regions of streetlights are detected and traced by examining images that are obtained from cameras of vehicles.Then,a scheme for analyzing visible light data extracted from the images is proposed.The proposed vehicle positioning scheme uses information on angles between vectors that are formed under the collinearity conditions between the absolute coordinates of at least three received streetlights,and the coordinates of an image sensor.The experiments are performed under stationary state and moving state at a speed of 5 and 20 km/h.To verify the reliability of the proposed scheme,a comparison is made between the actual and estimated location of the camera in the stationary state.In addition,the path of a moving vehicle and the estimated path of the vehicle are compared to check the performance of the scheme.The performance of the proposed technique is analyzed and experimental demonstration confirms that the proposed OCC-based VP scheme achieves positioning accuracy of under 1 m.展开更多
This article focuses on the performance analysis of both real-time and post-mission kinematic precise point positioning(PPP)in challenging marine environments.For this purpose,a real dynamic experiment lasting 6 h was...This article focuses on the performance analysis of both real-time and post-mission kinematic precise point positioning(PPP)in challenging marine environments.For this purpose,a real dynamic experiment lasting 6 h was carried out on a lake dam in?orum City of Turkey.While the kinematic test was continuing,the real-time PPP coordinates were obtained for each measurement epoch with a commercial real-time PPP(RT-PPP)service,namely the Trimble Center Point RTX.Then the post-mission PPP(PM-PPP)coordinates were calculated by using Multi-GNSS data and the Multi-GNSS Experiment(MGEX)precise products.The kinematic RT-PPP and PM-PPP results showed that the PPP coordinates were consistent with the relative solution at centimetre and decimetre level in horizontal and height components,respectively.This study implies that PPP technique is a powerful tool for highly accurate positioning in both real-time and post-mission modes,even for dynamic applications in harsh environments.展开更多
A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architectu...A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.展开更多
Fire rescue challenges and solutions have evolved from straightfor-ward plane rescue to encompass 3D space due to the rise of high-rise city buildings.Hence,this study facilitates a system with quick and simplified on...Fire rescue challenges and solutions have evolved from straightfor-ward plane rescue to encompass 3D space due to the rise of high-rise city buildings.Hence,this study facilitates a system with quick and simplified on-site launching and generates real-time location data,enabling fire rescuers to arrive at the intended spot faster and correctly for effective and precise rescue.Auto-positioning with step-by-step instructions is proposed when launching the locating system,while no extra measuring instrument like Total Station(TS)is needed.Real-time location tracking is provided via a 3D space real-time locating system(RTLS)constructed using Ultra-wide Bandwidth technology(UWB),which requires electromagnetic waves to pass through concrete walls.A hybrid weighted least squares with a time difference of arrival(WLS/TDOA)positioning method is proposed to address real path-tracking issues in 3D space and to meet RTLS requirements for quick computing in real-world applications.The 3D WLS/TDOA algorithm is theoretically constructed with the Cramer-Rao lower bound(CRLB).The computing complexity is reduced to the lower bound for embedded hardware to directly compute the time differential of the arriving signals using the time-to-digital converter(TDC).The results of the experiments show that the errors are controlled when the positioning algorithm is applied in various complicated situations to fulfill the requirements of engineering applications.The statistical analysis of the data reveals that the proposed UWB RTLS auto-positioning system can track target tags with an accuracy of 0.20 m.展开更多
To solve low precision and poor stability of the extended Kalman filter (EKF) in the vehicle integrated positioning system owing to acceleration, deceleration and turning (hereinafter referred to as maneuvering) ,...To solve low precision and poor stability of the extended Kalman filter (EKF) in the vehicle integrated positioning system owing to acceleration, deceleration and turning (hereinafter referred to as maneuvering) , the paper presents an adaptive filter algorithm that combines interacting multiple model (IMM) and non linear Kalman filter. The algorithm describes the motion mode of vehicle by using three state spacemode]s. At first, the parallel filter of each model is realized by using multiple nonlinear filters. Then the weight integration of filtering result is carried out by using the model matching likelihood function so as to get the system positioning information. The method has advantages of nonlinear system filter and overcomes disadvantages of single model of filtering algorithm that has poor effects on positioning the maneuvering target. At last, the paper uses IMM and EKF methods to simulate the global positioning system (OPS)/inertial navigation system (INS)/dead reckoning (DR) integrated positioning system, respectively. The results indicate that the IMM algorithm is obviously superior to EKF filter used in the integrated positioning system at present. Moreover, it can greatly enhance the stability and positioning precision of integrated positioning system.展开更多
In order to study the critical load position that causes cavities beneath the continuously reinforced concrete pavement( CRCP) slab under vehicle loading, the elliptical load is translated into the square load based...In order to study the critical load position that causes cavities beneath the continuously reinforced concrete pavement( CRCP) slab under vehicle loading, the elliptical load is translated into the square load based on the equivalence principle.The CRCP slab is analyzed to determine the cavity position beneath the slab under vehicle loading. The influences of cavity size on the CRCP slab's stress and vertical displacement are investigated. The study results showthat the formation of the cavity is unavoidable under traffic loading, and the cavity is located at the edge of the longitudinal crack and the slab corner.The cavity size exerts an obvious influence on the largest horizontal tensile stress and vertical displacement. The slab corner is the critical load position of the CRCP slab. The results can be used to assist the design of CRCP in avoiding cavities beneath slabs subject to vehicle loading.展开更多
An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the ve...An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the vehicle contour in an image is. first detected, and then the vertical and the horizontal symmetry axes of the license plate are detected using the symmetry axis of the vehicle contour as a reference. The vehicle location in an image is determined using license plate symmetry axes and the vertical and the horizontal projection maps of the vehicle edge image. A dataset consisting of 450 images (15 classes of vehicles) is used to test the proposed method. The experimental results indicate that compared with the vehicle contour-based, the license plate location-based, the vehicle texture-based and the Gabor feature-based methods, the proposed method is the best with a detection accuracy of 90.7% and an elapsed time of 125 ms.展开更多
The development of the fifth-generation(5G)mobile communication systems has entered the commercialization stage.5G has a high data rate,low latency,and high reliability that can meet the basic demands of most industri...The development of the fifth-generation(5G)mobile communication systems has entered the commercialization stage.5G has a high data rate,low latency,and high reliability that can meet the basic demands of most industries and daily life,such as the Internet of Things(IoT),intelligent transportation systems,positioning,and navigation.The continuous progress and development of society have aroused wide concern.Positioning accuracy is the core demand for the applications,especially in complex environments such as airports,warehouses,supermarkets,and basements.However,many factors also affect the accuracy of positioning in those environments,for example,multipath effects,non-line-of-sight,and clock synchronization errors.This paper provides a comprehensive review of the existing works about positioning for the future wireless network and discusses its key techniques and algorithms,as well as the current development and future directions.We first outline the current traditional positioning technologies and algorithms,which are discussed and analyzed with the relevant literature.In addition,we also discuss application scenarios for wireless localization.By comparing different positioning systems,the challenges and future development directions of existing wireless positioning systems are prospected.展开更多
An integrated GPS and GIS based vehicle dispatching system was presented. The system uses GIS technology for the development of digital mine map database and GPS for vehicle positioning. The system consists of five mo...An integrated GPS and GIS based vehicle dispatching system was presented. The system uses GIS technology for the development of digital mine map database and GPS for vehicle positioning. The system consists of five modules: position module incorporated GPS and dead reckoning (DR); a map database structure for displaying and guidance purposes; a routing module based on the map database is able to give out the best route for the vehicles; map matching and route guidance module put the vehicle position to its exact location on the road despite of errors in positioning and map data; and the client-server module allows client exchange information between driver and control centre. The system can be operated in client-server level in which users can request routing and guidance with devices such as hand phone and PDA by communicating their current positions to the server or runs in autonomous mode when users cannot reach the server.展开更多
According to the characteristic of global positioning system(GPS) reflection signals,a GPS delay mapping receiver system scheme is put forward,which not only satisfies the unmanned aerial vehicle(UAV) guidance loc...According to the characteristic of global positioning system(GPS) reflection signals,a GPS delay mapping receiver system scheme is put forward,which not only satisfies the unmanned aerial vehicle(UAV) guidance localization but also realizes height measurement.A code delay algorithm is put forward,which processes the direct and land reflected signal and outputs the navigation data and specular point.The GPS terrain reflected echo signal mathematical equation is inferred.The reflecting signal area,when the GPS signal passes the land,is analyzed.The height survey model reflected land surface characteristic is established.A simulation system which carries guidance localization of the UAV and the height measuring control through the GPS direct signal and the land reflected signal is designed,taken the GPS satellite as the illumination source,the receiver is put on the UAV.Then the UAV guidance signal,the GPS reflection signal and receiver's parallel processing are realized.The parallel processing reduces UAV's payload and raises system's operating efficiency.The simulation results confirms the validity of the model and also provides the basis for the UAV's optimization design.展开更多
A parallel neural network-based controller (PNNC) is presented for the motion control of underwater vehicles in this paper. It consists of a real-time part, a self-learning part and a desired-state programmer, and i...A parallel neural network-based controller (PNNC) is presented for the motion control of underwater vehicles in this paper. It consists of a real-time part, a self-learning part and a desired-state programmer, and it is different from normal adaptive neural network controller in structure. Owing to the introduction of the self-learning part, on-line learning can be performed without sample data in several sample periods, resulting in high learning speed of the controller and good control performance. The desired-state programmer is utilized to obtain better learning samples of the neural network to keep the stability of the controller. The developed controller is applied to the 4-degree of freedom control of the AUV “IUV- IV” and is successful on the simulation platform. The control performance is also compared with that of neural network controller with different structures such as normal adaptive neural network and different learning methods. Current effects and surge velocity control are also included to demonstrate the controller' s performance. It is shown that the PNNC has a great possibility to solve the problems in the control system design of underwater vehicles.展开更多
基金The National Natural Science Foundation of China(No.61273236)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1637),China Scholarship Council
文摘To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(MEMS) inertial sensors, a novel interacting multiple model-based two-stage Kalman filter(IMM-TSKF) is proposed to adapt to the uncertain inertial sensor noise. Three bias filters are developed based on different noise characteristics to cover a wide range of noise levels. Then, an accurate estimation of biases is calculated by the interacting multiple model algorithm to correct the bias-free filter. Thus, the vehicle positioning system can achieve good performance when suffering from uncertain inertial sensor noise. The experimental results indicate that the average position error of the proposed IMMTSKF is 25% lower than that of the general TSKF.
基金supported by the Ministry of Science and Technology of Thailand
文摘This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environments with underwater obstacles are computed using a numerical solution procedure based on an A* algorithm. The USV is modeled with a circular shape in 2 degrees of freedom(surge and yaw). In this paper, two-dimensional(2-D) underwater obstacle avoidance and the robust real-time path re-planning technique for actual USV using multi-beam FLS are developed. Our real-time path re-planning algorithm has been tested to regenerate the optimal path for several updated frames in the field of view of the sonar with a proper update frequency of the FLS. The performance of the proposed method was verified through simulations, and sea experiments. For simulations, the USV model can avoid both a single stationary obstacle, multiple stationary obstacles and moving obstacles with the near-optimal trajectory that are performed both in the vehicle and the world reference frame. For sea experiments, the proposed method for an underwater obstacle avoidance system is implemented with a USV test platform. The actual USV is automatically controlled and succeeded in its real-time avoidance against the stationary undersea obstacle in the field of view of the FLS together with the Global Positioning System(GPS) of the USV.
基金supported by National Natural Science Foundation of China(Grant No.51105001)State Key Laboratory of Automotive Safety and Energy,Tsinghua University,China(Grant No.KF14022)
文摘The current research of real-time observation for vehicle roll steer angle and compliance steer angle(both of them comprehensively referred as the additional steer angle in this paper) mainly employs the linear vehicle dynamic model, in which only the lateral acceleration of vehicle body is considered. The observation accuracy resorting to this method cannot meet the requirements of vehicle real-time stability control, especially under extreme driving conditions. The paper explores the solution resorting to experimental method. Firstly, a multi-body dynamic model of a passenger car is built based on the ADAMS/Car software, whose dynamic accuracy is verified by the same vehicle's roadway test data of steady static circular test. Based on this simulation platform, several influencing factors of additional steer angle under different driving conditions are quantitatively analyzed. Then ε-SVR algorithm is employed to build the additional steer angle prediction model, whose input vectors mainly include the sensor information of standard electronic stability control system(ESC). The method of typical slalom tests and FMVSS 126 tests are adopted to make simulation, train model and test model's generalization performance. The test result shows that the influence of lateral acceleration on additional steer angle is maximal (the magnitude up to 1°), followed by the longitudinal acceleration-deceleration and the road wave amplitude (the magnitude up to 0.3°). Moreover, both the prediction accuracy and the calculation real-time of the model can meet the control requirements of ESC This research expands the accurate observation methods of the additional steer angle under extreme driving conditions.
基金supported by Guangdong Province Key Research and Development Project(2019B090909001)National Natural Science Foundation of China(52175236)+1 种基金the Natural Science Foundation of China(Grant 51705268)China Postdoctoral Science Foundation Funded Project(Grant 2017M612191).
文摘Electric vehicle charging identification and positioning is critically important to achieving automatic charging.In terms of the problem of automatic charging for electric vehicles,a dual recognition and positioning method based on deep learning is proposed.The method is divided into two parts:global recognition and localization and local recognition and localization.In the specific implementation process,the collected pictures of electric vehicle charging attitude are classified and labeled.It is trained with the improved YOLOv4 networkmodel and the corresponding detectionmodel is obtained.The contour of the electric vehicle is extracted by the BiSeNet semantic segmentation algorithm.The minimum external rectangle is used for positioning of the electric vehicle.Based on the location relationship between the charging port and the electric vehicle,the rough location information of the charging port is obtained.The automatic charging equipment moves to the vicinity of the charging port,and the camera near the charging gun collects pictures of the charging port.The model is detected by the Hough circle,the KM algorithmis used for featurematching,and the homography matrix is used to solve the attitude.The results show that the dual identification and location method based on the improved YOLOv4 algorithm proposed in this paper can accurately locate the charging port.The accuracy of the charging connection can reach 80%.It provides an effective way to solve the problems of automatic charging identification and positioning of electric vehicles and has strong engineering practical value.
基金supported by the Natural Science Foundation of Guizhou Province(Grant Number:20161054)Joint Natural Science Foundation of Guizhou Province(Grant Number:LH20177226)+1 种基金2017 Special Project of New Academic Talent Training and Innovation Exploration of Guizhou University(Grant Number:20175788)The National Natural Science Foundation of China under Grant No.12205062.
文摘Autonomous driving technology has made a lot of outstanding achievements with deep learning,and the vehicle detection and classification algorithm has become one of the critical technologies of autonomous driving systems.The vehicle instance segmentation can perform instance-level semantic parsing of vehicle information,which is more accurate and reliable than object detection.However,the existing instance segmentation algorithms still have the problems of poor mask prediction accuracy and low detection speed.Therefore,this paper proposes an advanced real-time instance segmentation model named FIR-YOLACT,which fuses the ICIoU(Improved Complete Intersection over Union)and Res2Net for the YOLACT algorithm.Specifically,the ICIoU function can effectively solve the degradation problem of the original CIoU loss function,and improve the training convergence speed and detection accuracy.The Res2Net module fused with the ECA(Efficient Channel Attention)Net is added to the model’s backbone network,which improves the multi-scale detection capability and mask prediction accuracy.Furthermore,the Cluster NMS(Non-Maximum Suppression)algorithm is introduced in the model’s bounding box regression to enhance the performance of detecting similarly occluded objects.The experimental results demonstrate the superiority of FIR-YOLACT to the based methods and the effectiveness of all components.The processing speed reaches 28 FPS,which meets the demands of real-time vehicle instance segmentation.
基金supported by the National Natural Science Foundation of China(51708327 and 51978404)。
文摘Black carbon(BC)is considered the second largest anthropogenic climate forcer,but the radiative effects of BC are highly correlated with its combustion sources.On-road vehicles are an important source of anthropogenic BC.However,there are major uncertainties in the estimates of the BC emissions from on-road light-duty passenger vehicles(LDPVs),and results obtained with the portable emissions measurement system(PEMS)method are particularly lacking.We developed a PEMS platform and evaluated the on-road BC emissions from ten in-use LDPVs.We demonstrated that the BC emission factors(EFs)of gasoline direction injection(GDI)engine vehicles range from 1.10 to 1.56 mg.km^(-1),which are higher than the EFs of port fuel injection(PFI)engine vehicles(0.10–0.17 mg.km^(-1))by a factor of 11.The BC emissions during the cold-start phase contributed 2%–33%to the total emissions.A strong correlation(R^(2)=0.70)was observed between the relative BC EFs and average vehicle speed,indicating that traffic congestion alleviation could effectively mitigate BC emissions.Moreover,BC and particle number(PN)emissions were linearly correlated(R^(2)=0.90),and compared to PFI engine vehicles,the instantaneous PN-to-BC emission rates of GDI engine vehicles were less sensitive to vehicle specific power-to-velocity(VSPV)increase in all speed ranges.
基金This work was supported in part by the National Key Research and Development Program of China(2019YFB1600100)in part by the Foundation of Shaanxi Key Laboratory of Integrated and Intelligent Navigation under Grant SKLIIN-20190103.
文摘As the basis of location-based services(LBS),positioning is one of the most essential parts in intelligent transportation systems(ITS).Although global positioning system(GPS)has been widely used in vehicle positioning,it can not achieve lane level positioning accuracy.Motivated by the mature ranging technologies such as radar and ultra-wideband(UWB),several cooperative positioning(CP)methods have been proposed to enhance the accuracy and robustness of GPS.In this paper,we proposed a twostage CP algorithm that combines multidimensional scaling(MDS)and Procrustes analysis for vehicles with GPS information.Specifically,the optimized MDS based on the scaling by majorizing a complicated function(SMACOF)algorithm is first proposed to get the relative coordinates of vehicles which can tackle measurements of different error distributions,then Procrustes analysis is carried out to transform the relative coordinates of vehicles to their absolute coordinates based on GPS information.All the computations are performed at the mobile edge computing node(MECN)for the request of ultra-reliable and low latency communications(URLLC).Simulation results validate that the proposed algorithm can greatly improve the positioning accuracy and robustness for vehicles.
基金supported by the Brain Korea 21 Project in 2011 and MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Infor mation Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency)(NIPA-2011-C1090-1121-0010)
文摘This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of the vehicle are vertical and horizontal edges,shadow and symmetry.By comparing local features using the fixed window size,the features in the continuous images are tracked.A robust and fast Haarlike mask is used for detecting vertical and horizontal edges,and shadow is extracted by histogram equalization,and the sliding window method is used to compare both side templates of the detected candidates for extracting symmetry.The features for tracking are vertical edges,and histogram is used to compare location of the peak and magnitude of the edges.The method using local feature tracking in the continuous images is more robust for detecting vehicle than the method using single image,and the proposed algorithm is evaluated by continuous images obtained on the expressway and downtown.And it can be performed on real-time through applying it to the embedded system.
基金Chinese National High Technology Research and Development Program(No.2014BAG03B03)
文摘With the rapid development of vehicular ad hoc network( VANET) technology,VANET applications such as safe driving and emergency rescue demand high position accuracy,but traditional GPS is difficult to meet new accuracy requirements. To overcome this limitation,a new vehicle positioning method based on radio frequency identification( RFID) is proposed. First RFID base stations are divided into three categories using fuzzy technology,and then Chan algorithm is used to calculate three vehicles' positions,which are weighed to acquire vehicles' accurate position. This method can effectively overcome the problem that vehicle positioning accuracy is not high resulting from the factors such as ambient noise and base distribution when Chan algorithm is used. Experimental results show that the performance of the proposed method is superior to Chan algorithm and 2-step algorithm based on averaging method,which can satisfy the requirements of vehicle positioning in VANETs.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(NRF-2018R1A2B6002204).
文摘Demand for precise vehicle positioning(VP)increases as autonomous vehicles have recently been drawing attention.This paper proposes a scheme for positioning vehicles on the move based on optical camera communication(OCC)technology in the vehicle-to-infrastructure(V2I)environment.Light-emitting diode(LED)streetlights and vehicle cameras are used as transmitters and receivers respectively.Regions of streetlights are detected and traced by examining images that are obtained from cameras of vehicles.Then,a scheme for analyzing visible light data extracted from the images is proposed.The proposed vehicle positioning scheme uses information on angles between vectors that are formed under the collinearity conditions between the absolute coordinates of at least three received streetlights,and the coordinates of an image sensor.The experiments are performed under stationary state and moving state at a speed of 5 and 20 km/h.To verify the reliability of the proposed scheme,a comparison is made between the actual and estimated location of the camera in the stationary state.In addition,the path of a moving vehicle and the estimated path of the vehicle are compared to check the performance of the scheme.The performance of the proposed technique is analyzed and experimental demonstration confirms that the proposed OCC-based VP scheme achieves positioning accuracy of under 1 m.
文摘This article focuses on the performance analysis of both real-time and post-mission kinematic precise point positioning(PPP)in challenging marine environments.For this purpose,a real dynamic experiment lasting 6 h was carried out on a lake dam in?orum City of Turkey.While the kinematic test was continuing,the real-time PPP coordinates were obtained for each measurement epoch with a commercial real-time PPP(RT-PPP)service,namely the Trimble Center Point RTX.Then the post-mission PPP(PM-PPP)coordinates were calculated by using Multi-GNSS data and the Multi-GNSS Experiment(MGEX)precise products.The kinematic RT-PPP and PM-PPP results showed that the PPP coordinates were consistent with the relative solution at centimetre and decimetre level in horizontal and height components,respectively.This study implies that PPP technique is a powerful tool for highly accurate positioning in both real-time and post-mission modes,even for dynamic applications in harsh environments.
基金Sponsored by the National Natural Science Foundation of China (60843005)the Basic Research Foundation of Beijing Institute of Technology(20070142018)
文摘A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.
文摘Fire rescue challenges and solutions have evolved from straightfor-ward plane rescue to encompass 3D space due to the rise of high-rise city buildings.Hence,this study facilitates a system with quick and simplified on-site launching and generates real-time location data,enabling fire rescuers to arrive at the intended spot faster and correctly for effective and precise rescue.Auto-positioning with step-by-step instructions is proposed when launching the locating system,while no extra measuring instrument like Total Station(TS)is needed.Real-time location tracking is provided via a 3D space real-time locating system(RTLS)constructed using Ultra-wide Bandwidth technology(UWB),which requires electromagnetic waves to pass through concrete walls.A hybrid weighted least squares with a time difference of arrival(WLS/TDOA)positioning method is proposed to address real path-tracking issues in 3D space and to meet RTLS requirements for quick computing in real-world applications.The 3D WLS/TDOA algorithm is theoretically constructed with the Cramer-Rao lower bound(CRLB).The computing complexity is reduced to the lower bound for embedded hardware to directly compute the time differential of the arriving signals using the time-to-digital converter(TDC).The results of the experiments show that the errors are controlled when the positioning algorithm is applied in various complicated situations to fulfill the requirements of engineering applications.The statistical analysis of the data reveals that the proposed UWB RTLS auto-positioning system can track target tags with an accuracy of 0.20 m.
基金National Natural Science Foundation of China(No.61663020)Project of Education Department of Gansu Province(No.2016B-036)
文摘To solve low precision and poor stability of the extended Kalman filter (EKF) in the vehicle integrated positioning system owing to acceleration, deceleration and turning (hereinafter referred to as maneuvering) , the paper presents an adaptive filter algorithm that combines interacting multiple model (IMM) and non linear Kalman filter. The algorithm describes the motion mode of vehicle by using three state spacemode]s. At first, the parallel filter of each model is realized by using multiple nonlinear filters. Then the weight integration of filtering result is carried out by using the model matching likelihood function so as to get the system positioning information. The method has advantages of nonlinear system filter and overcomes disadvantages of single model of filtering algorithm that has poor effects on positioning the maneuvering target. At last, the paper uses IMM and EKF methods to simulate the global positioning system (OPS)/inertial navigation system (INS)/dead reckoning (DR) integrated positioning system, respectively. The results indicate that the IMM algorithm is obviously superior to EKF filter used in the integrated positioning system at present. Moreover, it can greatly enhance the stability and positioning precision of integrated positioning system.
基金The Science Foundation of Ministry of Transport of the People's Republic of China(No.200731822301-7)
文摘In order to study the critical load position that causes cavities beneath the continuously reinforced concrete pavement( CRCP) slab under vehicle loading, the elliptical load is translated into the square load based on the equivalence principle.The CRCP slab is analyzed to determine the cavity position beneath the slab under vehicle loading. The influences of cavity size on the CRCP slab's stress and vertical displacement are investigated. The study results showthat the formation of the cavity is unavoidable under traffic loading, and the cavity is located at the edge of the longitudinal crack and the slab corner.The cavity size exerts an obvious influence on the largest horizontal tensile stress and vertical displacement. The slab corner is the critical load position of the CRCP slab. The results can be used to assist the design of CRCP in avoiding cavities beneath slabs subject to vehicle loading.
基金The National Natural Science Foundation of China(No. 40804015,61101163)
文摘An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the vehicle contour in an image is. first detected, and then the vertical and the horizontal symmetry axes of the license plate are detected using the symmetry axis of the vehicle contour as a reference. The vehicle location in an image is determined using license plate symmetry axes and the vertical and the horizontal projection maps of the vehicle edge image. A dataset consisting of 450 images (15 classes of vehicles) is used to test the proposed method. The experimental results indicate that compared with the vehicle contour-based, the license plate location-based, the vehicle texture-based and the Gabor feature-based methods, the proposed method is the best with a detection accuracy of 90.7% and an elapsed time of 125 ms.
基金supported by the Key Project of Guizhou Science and Technology Support Program,Guizhou Key Science and Support[2021]-001supported by the Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(Guilin University of Electronic Technology)(CRKL220203)+2 种基金Key Laboratory of Middle Atmosphere and Global Environment Observation(LAGEO)Institute of Atmospheric Physics,Chinese Academy of Sciences(LAGEO-2022-02)Henan Province Key R&D and Promotion Special Project(No.212102210166)“Double First-Class”Discipline Creation Project of Surveying Science and Technology(GCCRC202306).
文摘The development of the fifth-generation(5G)mobile communication systems has entered the commercialization stage.5G has a high data rate,low latency,and high reliability that can meet the basic demands of most industries and daily life,such as the Internet of Things(IoT),intelligent transportation systems,positioning,and navigation.The continuous progress and development of society have aroused wide concern.Positioning accuracy is the core demand for the applications,especially in complex environments such as airports,warehouses,supermarkets,and basements.However,many factors also affect the accuracy of positioning in those environments,for example,multipath effects,non-line-of-sight,and clock synchronization errors.This paper provides a comprehensive review of the existing works about positioning for the future wireless network and discusses its key techniques and algorithms,as well as the current development and future directions.We first outline the current traditional positioning technologies and algorithms,which are discussed and analyzed with the relevant literature.In addition,we also discuss application scenarios for wireless localization.By comparing different positioning systems,the challenges and future development directions of existing wireless positioning systems are prospected.
基金Project (202183380) supported by the Research Programof the Educational Depart ment of Liaoning Province
文摘An integrated GPS and GIS based vehicle dispatching system was presented. The system uses GIS technology for the development of digital mine map database and GPS for vehicle positioning. The system consists of five modules: position module incorporated GPS and dead reckoning (DR); a map database structure for displaying and guidance purposes; a routing module based on the map database is able to give out the best route for the vehicles; map matching and route guidance module put the vehicle position to its exact location on the road despite of errors in positioning and map data; and the client-server module allows client exchange information between driver and control centre. The system can be operated in client-server level in which users can request routing and guidance with devices such as hand phone and PDA by communicating their current positions to the server or runs in autonomous mode when users cannot reach the server.
基金supported by the National High Technology Researchand Development Program of China(863 Program)(2008AA12A216)
文摘According to the characteristic of global positioning system(GPS) reflection signals,a GPS delay mapping receiver system scheme is put forward,which not only satisfies the unmanned aerial vehicle(UAV) guidance localization but also realizes height measurement.A code delay algorithm is put forward,which processes the direct and land reflected signal and outputs the navigation data and specular point.The GPS terrain reflected echo signal mathematical equation is inferred.The reflecting signal area,when the GPS signal passes the land,is analyzed.The height survey model reflected land surface characteristic is established.A simulation system which carries guidance localization of the UAV and the height measuring control through the GPS direct signal and the land reflected signal is designed,taken the GPS satellite as the illumination source,the receiver is put on the UAV.Then the UAV guidance signal,the GPS reflection signal and receiver's parallel processing are realized.The parallel processing reduces UAV's payload and raises system's operating efficiency.The simulation results confirms the validity of the model and also provides the basis for the UAV's optimization design.
文摘A parallel neural network-based controller (PNNC) is presented for the motion control of underwater vehicles in this paper. It consists of a real-time part, a self-learning part and a desired-state programmer, and it is different from normal adaptive neural network controller in structure. Owing to the introduction of the self-learning part, on-line learning can be performed without sample data in several sample periods, resulting in high learning speed of the controller and good control performance. The desired-state programmer is utilized to obtain better learning samples of the neural network to keep the stability of the controller. The developed controller is applied to the 4-degree of freedom control of the AUV “IUV- IV” and is successful on the simulation platform. The control performance is also compared with that of neural network controller with different structures such as normal adaptive neural network and different learning methods. Current effects and surge velocity control are also included to demonstrate the controller' s performance. It is shown that the PNNC has a great possibility to solve the problems in the control system design of underwater vehicles.