Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when mode...Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when modeling. For multi-objective optimization model, most researches consider two objectives. A multi-objective mathematical model for VRP is proposed, which considers the number of vehicles used, the length of route and the time arrived at each client. Genetic algorithm is one of the most widely used algorithms to solve VRP. As a type of genetic algorithm (GA), non-dominated sorting in genetic algorithm-Ⅱ (NSGA-Ⅱ) also suffers from premature convergence and enclosure competition. In order to avoid these kinds of shortage, a greedy NSGA-Ⅱ (GNSGA-Ⅱ) is proposed for VRP problem. Greedy algorithm is implemented in generating the initial population, cross-over and mutation. All these procedures ensure that NSGA-Ⅱ is prevented from premature convergence and refine the performance of NSGA-Ⅱ at each step. In the distribution problem of a distribution center in Michigan, US, the GNSGA-Ⅱ is compared with NSGA-Ⅱ. As a result, the GNSGA-Ⅱ is the most efficient one and can get the most optimized solution to VRP problem. Also, in GNSGA-Ⅱ, premature convergence is better avoided and search efficiency has been improved sharply.展开更多
The vehicle routing problem(VRP)is a typical discrete combinatorial optimization problem,and many models and algorithms have been proposed to solve the VRP and its variants.Although existing approaches have contribute...The vehicle routing problem(VRP)is a typical discrete combinatorial optimization problem,and many models and algorithms have been proposed to solve the VRP and its variants.Although existing approaches have contributed significantly to the development of this field,these approaches either are limited in problem size or need manual intervention in choosing parameters.To solve these difficulties,many studies have considered learning-based optimization(LBO)algorithms to solve the VRP.This paper reviews recent advances in this field and divides relevant approaches into end-to-end approaches and step-by-step approaches.We performed a statistical analysis of the reviewed articles from various aspects and designed three experiments to evaluate the performance of four representative LBO algorithms.Finally,we conclude the applicable types of problems for different LBO algorithms and suggest directions in which researchers can improve LBO algorithms.展开更多
As a new variant of vehicle routing problem( VRP),a finished vehicle routing problem with time windows in finished vehicle logistics( FVRPTW) is modeled and solved. An optimization model for FVRPTW is presented with t...As a new variant of vehicle routing problem( VRP),a finished vehicle routing problem with time windows in finished vehicle logistics( FVRPTW) is modeled and solved. An optimization model for FVRPTW is presented with the objective of scheduling multiple transport routes considering loading constraints along with time penalty function to minimize the total cost. Then a genetic algorithm( GA) is developed. The specific encoding and genetic operators for FVRPTW are devised.Especially,in order to accelerate its convergence,an improved termination condition is given. Finally,a case study is used to evaluate the effectiveness of the proposed algorithm and a series of experiments are conducted over a set of finished vehicle routing problems. The results demonstrate that the proposed approach has superior performance and satisfies users in practice. Contributions of the study are the modeling and solving of a complex FVRPTW in logistics industry.展开更多
With the challenge of great growing of transport diversity for the automobile enterprises, the heterogeneous vehicle routing problem with multiple depots, multiple types of finished vehicles and multiple types of tran...With the challenge of great growing of transport diversity for the automobile enterprises, the heterogeneous vehicle routing problem with multiple depots, multiple types of finished vehicles and multiple types of transport vehicles in finished vehicle logistics(HVRPMD) is modelled and solved. A multi-objective optimization model for HVRPMD is presented considering loading constraints to minimize the total cost and minimize the number of transport vehicles. Then a hybrid heuristic algorithm based on genetic algorithm and particle swarm optimization(GA-PSO) is developed. Moreover, a case study is used to evaluate the effectiveness of this algorithm. By comparing the GA-PSO algorithm with the traditional GA algorithm, the simulation results demonstrate the proposed GA-PSO algorithm is able to better support the HVRPMD problem in practice. Contributions of the paper are the modelling and solving of a complex HVRPMD in logistics industry.展开更多
双层次车辆路径NP组合优化问题的传统求解算法精度较低,针对该问题,提出一种基于最优切割算法和全路径匹配交叉Memetic算法的双层次车辆路径优化算法(OCFM-2E-VRP)。根据一二级配送耦合特点,采用最优切割算法一次性确定中转站配送容量...双层次车辆路径NP组合优化问题的传统求解算法精度较低,针对该问题,提出一种基于最优切割算法和全路径匹配交叉Memetic算法的双层次车辆路径优化算法(OCFM-2E-VRP)。根据一二级配送耦合特点,采用最优切割算法一次性确定中转站配送容量次优解,以此作为客户配送优化的基础。为提高算法效率,设计全路径匹配交叉算子对Memetic算法交叉操作进行改进,利用爬山法进行局部搜索,并使最优切割算法和全路径匹配交叉Memetic算法顺序执行,实现对一级中转站容量和二级客户配送的同步优化。仿真结果表明,与Branch and Cut和Multi-start算法相比,该优化算法具有更高的收敛精度和更快的收敛速度。展开更多
基金supported by National Natural Science Foundation of China (No.60474059)Hi-tech Research and Development Program of China (863 Program,No.2006AA04Z160).
文摘Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when modeling. For multi-objective optimization model, most researches consider two objectives. A multi-objective mathematical model for VRP is proposed, which considers the number of vehicles used, the length of route and the time arrived at each client. Genetic algorithm is one of the most widely used algorithms to solve VRP. As a type of genetic algorithm (GA), non-dominated sorting in genetic algorithm-Ⅱ (NSGA-Ⅱ) also suffers from premature convergence and enclosure competition. In order to avoid these kinds of shortage, a greedy NSGA-Ⅱ (GNSGA-Ⅱ) is proposed for VRP problem. Greedy algorithm is implemented in generating the initial population, cross-over and mutation. All these procedures ensure that NSGA-Ⅱ is prevented from premature convergence and refine the performance of NSGA-Ⅱ at each step. In the distribution problem of a distribution center in Michigan, US, the GNSGA-Ⅱ is compared with NSGA-Ⅱ. As a result, the GNSGA-Ⅱ is the most efficient one and can get the most optimized solution to VRP problem. Also, in GNSGA-Ⅱ, premature convergence is better avoided and search efficiency has been improved sharply.
文摘The vehicle routing problem(VRP)is a typical discrete combinatorial optimization problem,and many models and algorithms have been proposed to solve the VRP and its variants.Although existing approaches have contributed significantly to the development of this field,these approaches either are limited in problem size or need manual intervention in choosing parameters.To solve these difficulties,many studies have considered learning-based optimization(LBO)algorithms to solve the VRP.This paper reviews recent advances in this field and divides relevant approaches into end-to-end approaches and step-by-step approaches.We performed a statistical analysis of the reviewed articles from various aspects and designed three experiments to evaluate the performance of four representative LBO algorithms.Finally,we conclude the applicable types of problems for different LBO algorithms and suggest directions in which researchers can improve LBO algorithms.
基金Supported by the National Natural Science Foundation of China(No.51565036)
文摘As a new variant of vehicle routing problem( VRP),a finished vehicle routing problem with time windows in finished vehicle logistics( FVRPTW) is modeled and solved. An optimization model for FVRPTW is presented with the objective of scheduling multiple transport routes considering loading constraints along with time penalty function to minimize the total cost. Then a genetic algorithm( GA) is developed. The specific encoding and genetic operators for FVRPTW are devised.Especially,in order to accelerate its convergence,an improved termination condition is given. Finally,a case study is used to evaluate the effectiveness of the proposed algorithm and a series of experiments are conducted over a set of finished vehicle routing problems. The results demonstrate that the proposed approach has superior performance and satisfies users in practice. Contributions of the study are the modeling and solving of a complex FVRPTW in logistics industry.
基金Supported by the National Natural Science Foundation of China(No.51565036)。
文摘With the challenge of great growing of transport diversity for the automobile enterprises, the heterogeneous vehicle routing problem with multiple depots, multiple types of finished vehicles and multiple types of transport vehicles in finished vehicle logistics(HVRPMD) is modelled and solved. A multi-objective optimization model for HVRPMD is presented considering loading constraints to minimize the total cost and minimize the number of transport vehicles. Then a hybrid heuristic algorithm based on genetic algorithm and particle swarm optimization(GA-PSO) is developed. Moreover, a case study is used to evaluate the effectiveness of this algorithm. By comparing the GA-PSO algorithm with the traditional GA algorithm, the simulation results demonstrate the proposed GA-PSO algorithm is able to better support the HVRPMD problem in practice. Contributions of the paper are the modelling and solving of a complex HVRPMD in logistics industry.
文摘双层次车辆路径NP组合优化问题的传统求解算法精度较低,针对该问题,提出一种基于最优切割算法和全路径匹配交叉Memetic算法的双层次车辆路径优化算法(OCFM-2E-VRP)。根据一二级配送耦合特点,采用最优切割算法一次性确定中转站配送容量次优解,以此作为客户配送优化的基础。为提高算法效率,设计全路径匹配交叉算子对Memetic算法交叉操作进行改进,利用爬山法进行局部搜索,并使最优切割算法和全路径匹配交叉Memetic算法顺序执行,实现对一级中转站容量和二级客户配送的同步优化。仿真结果表明,与Branch and Cut和Multi-start算法相比,该优化算法具有更高的收敛精度和更快的收敛速度。