期刊文献+
共找到463篇文章
< 1 2 24 >
每页显示 20 50 100
GREEDY NON-DOMINATED SORTING IN GENETIC ALGORITHM-ⅡFOR VEHICLE ROUTING PROBLEM IN DISTRIBUTION 被引量:4
1
作者 WEI Tian FAN Wenhui XU Huayu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第6期18-24,共7页
Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when mode... Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when modeling. For multi-objective optimization model, most researches consider two objectives. A multi-objective mathematical model for VRP is proposed, which considers the number of vehicles used, the length of route and the time arrived at each client. Genetic algorithm is one of the most widely used algorithms to solve VRP. As a type of genetic algorithm (GA), non-dominated sorting in genetic algorithm-Ⅱ (NSGA-Ⅱ) also suffers from premature convergence and enclosure competition. In order to avoid these kinds of shortage, a greedy NSGA-Ⅱ (GNSGA-Ⅱ) is proposed for VRP problem. Greedy algorithm is implemented in generating the initial population, cross-over and mutation. All these procedures ensure that NSGA-Ⅱ is prevented from premature convergence and refine the performance of NSGA-Ⅱ at each step. In the distribution problem of a distribution center in Michigan, US, the GNSGA-Ⅱ is compared with NSGA-Ⅱ. As a result, the GNSGA-Ⅱ is the most efficient one and can get the most optimized solution to VRP problem. Also, in GNSGA-Ⅱ, premature convergence is better avoided and search efficiency has been improved sharply. 展开更多
关键词 Greedy non-dominated sorting in genetic algorithm-Ⅱ (GNSGA-Ⅱ) vehicle routing problem (VRP) Multi-objective optimization
下载PDF
A novel genetic algorithm for vehicle routing problem with time windows
2
作者 刘云忠 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第3期437-444,共8页
A novel genetic algorithm with multiple species in dynamic region is proposed,each of which occupies a dynamic region determined by the weight vector of a fuzzy adaptive Hamming neural network. Through learning and cl... A novel genetic algorithm with multiple species in dynamic region is proposed,each of which occupies a dynamic region determined by the weight vector of a fuzzy adaptive Hamming neural network. Through learning and classification of genetic individuals in the evolutionary procedure,the neural network distributes multiple species into different regions of the search space. Furthermore,the neural network dynamically expands each search region or establishes new region for good offspring individuals to continuously keep the diversification of the genetic population. As a result,the premature problem inherent in genetic algorithm is alleviated and better tradeoff between the ability of exploration and exploitation can be obtained. The experimental results on the vehicle routing problem with time windows also show the good performance of the proposed genetic algorithm. 展开更多
关键词 genetic algorithm multiple species neural network premature problem vehicle routing problem with time windows
下载PDF
A Hybrid Genetic Algorithm for Vehicle Routing Problem with Complex Constraints
3
作者 CHEN Yan LU Jun LI Zeng-zhi 《International Journal of Plant Engineering and Management》 2006年第2期88-96,共9页
Most research on the Vehicle Routing Problem (VRP) is focused on standard conditions, which is not suitable for specific cases. A Hybrid Genetic Algorithm is proposed to solve a Vehicle Routing Problem (VRP) with ... Most research on the Vehicle Routing Problem (VRP) is focused on standard conditions, which is not suitable for specific cases. A Hybrid Genetic Algorithm is proposed to solve a Vehicle Routing Problem (VRP) with complex side constraints. A novel coding method is designed especially for side constraints. A greedy algorithm combined with a random algorithm is introduced to enable the diversity of the initial population, as well as a local optimization algorithm employed to improve the searching efficiency. In order to evaluate the performance, this mechanism has been implemented in an oil distribution center, the experimental and executing results show that the near global optimal solution can be easily and quickly obtained by this method, and the solution is definitely satisfactory in the VRP application. 展开更多
关键词 genetic algorithm vehicle routing problem greedy algorithm complex constraints
下载PDF
A Genetic Algorithm for the Split Delivery Vehicle Routing Problem 被引量:8
4
作者 Joseph Hubert Wilck IV Tom M. Cavalier 《American Journal of Operations Research》 2012年第2期207-216,共10页
The Split Delivery Vehicle Routing Problem (SDVRP) allows customers to be assigned to multiple routes. Two hybrid genetic algorithms are developed for the SDVRP and computational results are given for thirty-two data ... The Split Delivery Vehicle Routing Problem (SDVRP) allows customers to be assigned to multiple routes. Two hybrid genetic algorithms are developed for the SDVRP and computational results are given for thirty-two data sets from previous literature. With respect to the total travel distance and computer time, the genetic algorithm compares favorably versus a column generation method and a two-phase method. 展开更多
关键词 vehicle routing problem TRANSPORTATION genetic algorithm
下载PDF
A Time-Dependent Vehicle Routing Problem with Time Windows for E-Commerce Supplier Site Pickups Using Genetic Algorithm 被引量:3
5
作者 Suresh Nanda Kumar Ramasamy Panneerselvam 《Intelligent Information Management》 2015年第4期181-194,共14页
The VRP is classified as an NP-hard problem. Hence exact optimization methods may be difficult to solve these problems in acceptable CPU times, when the problem involves real-world data sets that are very large. To ge... The VRP is classified as an NP-hard problem. Hence exact optimization methods may be difficult to solve these problems in acceptable CPU times, when the problem involves real-world data sets that are very large. To get solutions in determining routes which are realistic and very close to the actual solution, we use heuristics and metaheuristics which are of the combinatorial optimization type. A literature review of VRPTW, TDVRP, and a metaheuristic such as the genetic algorithm was conducted. In this paper, the implementation of the VRPTW and its extension, the time-dependent VRPTW (TDVRPTW) has been carried out using the model as well as metaheuristics such as the genetic algorithm (GA). The algorithms were implemented, using Matlab and HeuristicLab optimization software. A plugin was developed using Visual C# and DOT NET framework 4.5. Results were tested using Solomon’s 56 benchmark instances classified into groups such as C1, C2, R1, R2, RC1, RC2, with 100 customer nodes, 25 vehicles and each vehicle capacity of 200. The results were comparable to the earlier algorithms developed and in some cases the current algorithm yielded better results in terms of total distance travelled and the average number of vehicles used. 展开更多
关键词 vehicle routing problem EXACT Methods HEURISTICS Metaheuristics VRPTW TDVRPTW Optimization genetic algorithms Matlab HeuristicLab C# DOT NET
下载PDF
Development of an Efficient Genetic Algorithm for the Time Dependent Vehicle Routing Problem with Time Windows 被引量:2
6
作者 Suresh Nanda Kumar Ramasamy Panneerselvam 《American Journal of Operations Research》 2017年第1期1-25,共25页
This research considers the time-dependent vehicle routing problem (TDVRP). The time-dependent VRP does not assume constant speeds of the vehicles. The speeds of the vehicles vary during the various times of the day, ... This research considers the time-dependent vehicle routing problem (TDVRP). The time-dependent VRP does not assume constant speeds of the vehicles. The speeds of the vehicles vary during the various times of the day, based on the traffic conditions. During the periods of peak traffic hours, the vehicles travel at low speeds and during non-peak hours, the vehicles travel at higher speeds. A survey by TCI and IIM-C (2014) found that stoppage delay as percentage of journey time varied between five percent and 25 percent, and was very much dependent on the characteristics of routes. Costs of delay were also estimated and found not to affect margins by significant amounts. This study aims to overcome such problems arising out of traffic congestions that lead to unnecessary delays and hence, loss in customers and thereby valuable revenues to a company. This study suggests alternative routes to minimize travel times and travel distance, assuming a congestion in traffic situation. In this study, an efficient GA-based algorithm has been developed for the TDVRP, to minimize the total distance travelled, minimize the total number of vehicles utilized and also suggest alternative routes for congestion avoidance. This study will help to overcome and minimize the negative effects due to heavy traffic congestions and delays in customer service. The proposed algorithm has been shown to be superior to another existing algorithm in terms of the total distance travelled and also the number of vehicles utilized. Also the performance of the proposed algorithm is as good as the mathematical model for small size problems. 展开更多
关键词 TIME-DEPENDENT vehicle routing problem genetic algorithm Chromosomes CROSS-OVER TRAVEL TIMES vehicles
下载PDF
Genetic Crossover Operators for the Capacitated Vehicle Routing Problem 被引量:1
7
作者 Zakir Hussain Ahmed Naif Al-Otaibi +1 位作者 Abdullah Al-Tameem Abdul Khader Jilani Saudagar 《Computers, Materials & Continua》 SCIE EI 2023年第1期1575-1605,共31页
We study the capacitated vehicle routing problem(CVRP)which is a well-known NP-hard combinatorial optimization problem(COP).The aim of the problem is to serve different customers by a convoy of vehicles starting from ... We study the capacitated vehicle routing problem(CVRP)which is a well-known NP-hard combinatorial optimization problem(COP).The aim of the problem is to serve different customers by a convoy of vehicles starting from a depot so that sum of the routing costs under their capacity constraints is minimized.Since the problem is very complicated,solving the problem using exact methods is almost impossible.So,one has to go for the heuristic/metaheuristic methods and genetic algorithm(GA)is broadly applied metaheuristic method to obtain near optimal solution to such COPs.So,this paper studies GAs to find solution to the problem.Generally,to solve a COP,GAs start with a chromosome set named initial population,and then mainly three operators-selection,crossover andmutation,are applied.Among these three operators,crossover is very crucial in designing and implementing GAs,and hence,numerous crossover operators were developed and applied to different COPs.There are two major kinds of crossover operators-blind crossovers and distance-based crossovers.We intend to compare the performance of four blind crossover and four distance-based crossover operators to test the suitability of the operators to solve the CVRP.These operators were originally proposed for the standard travelling salesman problem(TSP).First,these eight crossovers are illustrated using same parent chromosomes for building offspring(s).Then eight GAs using these eight crossover operators without any mutation operator and another eight GAs using these eight crossover operators with a mutation operator are developed.These GAs are experimented on some benchmark asymmetric and symmetric instances of numerous sizes and various number of vehicles.Our study revealed that the distance-based crossovers are much superior to the blind crossovers.Further,we observed that the sequential constructive crossover with and without mutation operator is the best one for theCVRP.This estimation is validated by Student’s t-test at 95%confidence level.We further determined a comparative rank of the eight crossovers for the CVRP. 展开更多
关键词 vehicle routing problem NP-HARD genetic algorithm sequential constructive crossover MUTATION
下载PDF
An Alternative Algorithm for Vehicle Routing Problem with Time Windows for Daily Deliveries 被引量:2
8
作者 Nor Edayu Abdul Ghani S. Sarifah Radiah Shariff Siti Meriam Zahari 《Advances in Pure Mathematics》 2016年第5期342-350,共9页
This study attempts to solve vehicle routing problem with time window (VRPTW). The study first identifies the real problems and suggests some recommendations on the issues. The technique used in this study is Genetic ... This study attempts to solve vehicle routing problem with time window (VRPTW). The study first identifies the real problems and suggests some recommendations on the issues. The technique used in this study is Genetic Algorithm (GA) and initialization applied is random population method. The objective of the study is to assign a number of vehicles to routes that connect customers and depot such that the overall distance travelled is minimized and the delivery operations are completed within the time windows requested by the customers. The analysis reveals that the problems experienced in vehicle routing with time window can be solved by GA and retrieved for optimal solutions. After a thorough study on VRPTW, it is highly recommended that a company should implement the optimal routes derived from the study to increase the efficiency and accuracy of delivery with time insertion. 展开更多
关键词 vehicle routing problem with Time Windows (VRPTW) genetic algorithm (GA) Random Population Method
下载PDF
New Hybrid Algorithm Based on BicriterionAnt for Solving Multiobjective Green Vehicle Routing Problem
9
作者 Emile Nawej Kayij Joél Lema Makubikua Justin Dupar Kampempe Busili 《American Journal of Operations Research》 2023年第3期33-52,共20页
The main objective of this paper is to propose a new hybrid algorithm for solving the Bi objective green vehicle routing problem (BGVRP) from the BicriterionAnt metaheuristic. The methodology used is subdivided as fol... The main objective of this paper is to propose a new hybrid algorithm for solving the Bi objective green vehicle routing problem (BGVRP) from the BicriterionAnt metaheuristic. The methodology used is subdivided as follows: first, we introduce data from the GVRP or instances from the literature. Second, we use the first cluster route second technique using the k-means algorithm, then we apply the BicriterionAntAPE (BicriterionAnt Adjacent Pairwise Exchange) algorithm to each cluster obtained. And finally, we make a comparative analysis of the results obtained by the case study as well as instances from the literature with some existing metaheuristics NSGA, SPEA, BicriterionAnt in order to see the performance of the new hybrid algorithm. The results show that the routes which minimize the total distance traveled by the vehicles are different from those which minimize the CO<sub>2</sub> pollution, which can be understood by the fact that the objectives are conflicting. In this study, we also find that the optimal route reduces product CO<sub>2</sub> by almost 7.2% compared to the worst route. 展开更多
关键词 Metaheuristics Green vehicle routing problem Ant Colony algorithm genetic algorithms Green Logistics
下载PDF
Improved ant colony optimization for multi-depot heterogeneous vehicle routing problem with soft time windows 被引量:10
10
作者 汤雅连 蔡延光 杨期江 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期94-99,共6页
Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a ... Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful. 展开更多
关键词 vehicle routing problem soft time window improved ant colony optimization customer service priority genetic algorithm
下载PDF
A Survey on the Vehicle Routing Problem and Its Variants 被引量:7
11
作者 Suresh Nanda Kumar Ramasamy Panneerselvam 《Intelligent Information Management》 2012年第3期66-74,共9页
In this paper, we have conducted a literature review on the recent developments and publications involving the vehicle routing problem and its variants, namely vehicle routing problem with time windows (VRPTW) and the... In this paper, we have conducted a literature review on the recent developments and publications involving the vehicle routing problem and its variants, namely vehicle routing problem with time windows (VRPTW) and the capacitated vehicle routing problem (CVRP) and also their variants. The VRP is classified as an NP-hard problem. Hence, the use of exact optimization methods may be difficult to solve these problems in acceptable CPU times, when the problem involves real-world data sets that are very large. The vehicle routing problem comes under combinatorial problem. Hence, to get solutions in determining routes which are realistic and very close to the optimal solution, we use heuristics and meta-heuristics. In this paper we discuss the various exact methods and the heuristics and meta-heuristics used to solve the VRP and its variants. 展开更多
关键词 vehicle routing problem Exact Methods HEURISTICS META-HEURISTICS VRPTW OPTIMIZATION Ant COLONY OPTIMIZATION genetic algorithms
下载PDF
Vehicle routing optimization algorithm based on time windows and dynamic demand
12
作者 LI Jun DUAN Yurong +1 位作者 ZHANG Weiwei ZHU Liyuan 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期369-378,共10页
To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,... To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem. 展开更多
关键词 vehicle routing problem dynamic demand genetic algorithm large-scale neighborhood search time windows
下载PDF
A New Approach to the Optimization of the CVRP through Genetic Algorithms 被引量:1
13
作者 Mariano Frutos Fernando Tohmé 《American Journal of Operations Research》 2012年第4期495-501,共7页
This paper presents a new approach to the analysis of complex distribution problems under capacity constraints. These problems are known in the literature as CVRPs (Capacitated Vehicle Routing Problems). The procedure... This paper presents a new approach to the analysis of complex distribution problems under capacity constraints. These problems are known in the literature as CVRPs (Capacitated Vehicle Routing Problems). The procedure introduced in this paper optimizes a transformed variant of a CVRP. It starts generating feasible clusters and codifies their ordering. In the next stage the procedure feeds this information into a genetic algorithm for its optimization. This makes the algorithm independent of the constraints and improves its performance. Van Breedam problems have been used to test this technique. While the results obtained are similar to those in other works, the processing times are longer. 展开更多
关键词 vehicle routing problem genetic algorithmS Modeling OPTIMIZATION
下载PDF
Full truckload vehicle routing problem with profits 被引量:4
14
作者 Jian Li Wenhua Lu 《Journal of Traffic and Transportation Engineering(English Edition)》 2014年第2期146-152,共7页
A new variant of the full truckload vehicle routing problem is studied. In this problem there are more than one delivery points corresponding to the same pickup point, and one order is allowed to be served several tim... A new variant of the full truckload vehicle routing problem is studied. In this problem there are more than one delivery points corresponding to the same pickup point, and one order is allowed to be served several times by the same vehicle or different vehicles. For the orders which cannot be assigned because of resource constraint, the logistics company outsources them to other logistics companies at a certain cost. To maximize its profits, logistics company decides which to be transported by private fleet and which to be outsourced. The mathematical model is constructed for the problem. Since the problem is NP-hard and it is difficult to solve the large-scale problems with an exact algorithm, a hybrid genetic algorithm is proposed. Computational results show the effectiveness of the hybrid genetic algorithm. 展开更多
关键词 full truckload vehicle routing problem genetic algorithm PROFIT
原文传递
求解带容量约束车辆路径问题的改进遗传算法 被引量:1
15
作者 徐伟华 邱龙龙 +1 位作者 张根瑞 魏传祥 《计算机工程与设计》 北大核心 2024年第3期785-792,共8页
为解决传统遗传算法求解带容量约束的车辆路径问题时收敛速度慢和局部搜索能力差的问题,对传统遗传算法提出一种改进策略。使用基于贪婪策略的启发式交叉算子加强算法接近最优解的能力,加快算法收敛速度,在变异操作中,引入最近邻搜索算... 为解决传统遗传算法求解带容量约束的车辆路径问题时收敛速度慢和局部搜索能力差的问题,对传统遗传算法提出一种改进策略。使用基于贪婪策略的启发式交叉算子加强算法接近最优解的能力,加快算法收敛速度,在变异操作中,引入最近邻搜索算子,缩小基因变异范围,使用单点局部插入算子提高算法的局部优化能力。采用精英选择和轮盘赌法结合的选择策略,保持种群多样性以加强算法的全局搜索能力。实例计算测试表明,与传统遗传算法相比,所提算法求解平均偏差降低了70.25%,求解时间减少了87.41%;与ALNS和AGGWOA算法相比,有更高的求解质量和更好的稳定性。 展开更多
关键词 遗传算法 车辆路径问题 贪婪策略 交叉算子 最近邻搜索 局部优化 精英选择
下载PDF
家电送装一体/送装分离混合模式下的车辆路径问题
16
作者 代颖 王丹 +1 位作者 杨斐 马祖军 《运筹与管理》 CSSCI CSCD 北大核心 2024年第7期65-71,共7页
结合送装分离模式的灵活性和配送效率,研究家电送装一体和送装分离模式相结合的车辆路径问题,以寻求兼顾客户服务体验和整体送装效率的最优送装路径方案。基于混合整数线性规划方法建立了以送装总成本最小化为目标、带软时间窗的家电送... 结合送装分离模式的灵活性和配送效率,研究家电送装一体和送装分离模式相结合的车辆路径问题,以寻求兼顾客户服务体验和整体送装效率的最优送装路径方案。基于混合整数线性规划方法建立了以送装总成本最小化为目标、带软时间窗的家电送装路径优化模型,并根据模型特点针对性设计了改进的遗传算法进行求解,通过算例验证了所提模型和算法的有效性。最后,结合实例比较了上述混合送装模式相对于送装一体和送装分离模式的优化方案绩效,以期为家电送装路径优化提供辅助决策支持。 展开更多
关键词 家电送装 车辆路径问题 时间窗 遗传算法
下载PDF
基于改进K-means聚类和遗传算法的混合算法求解异构车辆路径问题
17
作者 吴麟麟 吕一鸣 +1 位作者 何美玲 韩珣 《物流技术》 2024年第7期48-62,共15页
由于目前单一车型配送存在资源浪费和效率低下等问题,选取确定数量的不同车型对各客户点进行配送服务往往可以得到更优的配送路径方案。针对这一点,描述了一种异构车辆路径问题,并建立了具有固定车辆数且考虑固定成本、可变成本以及时... 由于目前单一车型配送存在资源浪费和效率低下等问题,选取确定数量的不同车型对各客户点进行配送服务往往可以得到更优的配送路径方案。针对这一点,描述了一种异构车辆路径问题,并建立了具有固定车辆数且考虑固定成本、可变成本以及时间窗惩罚成本的混合整数规划模型。同时,提出了一种基于改进K-means聚类和遗传算法的混合算法对模型进行求解。实验仿真先求解不考虑时间窗的问题初步证明混合算法的有效性,再在带时间窗的问题中求解不同规模算例的单一及异构车型结果,以证明异构车型配送更优。最后,对该混合算法的求解结果与其他混合算法的求解结果进行对比分析,证明了混合算法的优越性。研究结果表明:该混合算法求解的异构车型结果优于单一车型,并且比其他混合算法求解的异构车型结果更优,异构车辆配送使用的配送车辆数更少,总成本也更低,该混合算法具有更好的效率和性能。 展开更多
关键词 异构车辆路径问题 改进K-means聚类算法 遗传算法 混合算法
下载PDF
集配协同下多产品越库配送车辆路径问题研究
18
作者 王长琼 杨畅 《武汉理工大学学报(交通科学与工程版)》 2024年第2期385-391,共7页
文中基于实际越库配送中零售商的多样化需求和集配过程的连续型,针对集配协同下的多产品车辆路径问题,构建以车辆固定成本、运输成本、时间窗惩罚成本和库存持有成本最小化为目标的带越库配送的车辆路径优化模型.根据问题的阶段性特征,... 文中基于实际越库配送中零售商的多样化需求和集配过程的连续型,针对集配协同下的多产品车辆路径问题,构建以车辆固定成本、运输成本、时间窗惩罚成本和库存持有成本最小化为目标的带越库配送的车辆路径优化模型.根据问题的阶段性特征,提出一种改进的遗传算法对问题进行求解,并以车辆等待时间最小为准则设计解码方案.通过算例的对比分析,验证了改进的遗传算法有更强的寻优能力.结果表明:建立的模型能够有效降低总成本,提高运输效率. 展开更多
关键词 越库配送 集配协同 车辆路径问题 改进遗传算法
下载PDF
多中心半开放式同时送取货的车辆路径问题研究
19
作者 陈荣虎 张建宏 徐祯 《哈尔滨商业大学学报(自然科学版)》 CAS 2024年第1期32-38,共7页
研究了带软时间窗约束的多配送中心半开放式同时送取货的车辆路径问题,所有客户点均存在送取两种需求,并采用同一辆车同时提供送取服务.车辆服务完路线上所有客户点后,不一定返回起始配送中心,可就近返回任意配送中心.在此条件下,构建... 研究了带软时间窗约束的多配送中心半开放式同时送取货的车辆路径问题,所有客户点均存在送取两种需求,并采用同一辆车同时提供送取服务.车辆服务完路线上所有客户点后,不一定返回起始配送中心,可就近返回任意配送中心.在此条件下,构建了以车辆运输成本、车辆租赁成本、时间窗惩罚成本等总和最小为目标的优化模型.根据问题特征,设计了自适应精英遗传算法对该问题进行求解,引入自适应机制,根据个体的适应度动态地调节交叉和变异概率,采用精英保留策略将优秀个体进行遗传保留,不仅增强了算法的全局优化能力,还均衡了算法的局部搜索能力.通过案例仿真,验证了模型和算法的可行性和有效性.研究成果丰富了车辆路径问题的相关研究,为物流企业提供了一种决策参考. 展开更多
关键词 车辆路径问题 软时间窗 多中心半开放式 同时送取货 自适应精英遗传算法
下载PDF
客户等级划分视阈下的车辆路径遗传算法研究 被引量:1
20
作者 王力锋 姚源果 +1 位作者 周万洋 刘抗英 《物流工程与管理》 2024年第1期40-44,53,共6页
针对当前车辆路径规划算法存在的车辆满载率低、车辆路径求解时间长、车辆配送成本高的问题,文中设计了考虑客户等级划分的车辆路径遗传算法求解过程。在描述车辆路径相关问题和函数的基础上,给出相关假设和约束条件,确定目标函数并考... 针对当前车辆路径规划算法存在的车辆满载率低、车辆路径求解时间长、车辆配送成本高的问题,文中设计了考虑客户等级划分的车辆路径遗传算法求解过程。在描述车辆路径相关问题和函数的基础上,给出相关假设和约束条件,确定目标函数并考虑客户等级划分,然后构建时间窗车辆路径模型。采用遗传算法,通过染色体编码生成初始种群,再通过选择、交叉以及变异输出最优解,从而求解时间窗车辆路径。实验结果表明:该方法能够有效提升车辆满载率,并缩短求解时间、降低配送成本。 展开更多
关键词 车辆路径问题 客户等级划分 遗传算法 适应度函数 变异概率
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部