期刊文献+
共找到1,719篇文章
< 1 2 86 >
每页显示 20 50 100
The Model Reference Adaptive Fuzzy Control for the Vehicle Semi-Active Suspension
1
作者 管继富 侯朝桢 +1 位作者 顾亮 武云鹏 《Journal of Beijing Institute of Technology》 EI CAS 2003年第4期342-346,共5页
The LQG control system is employed as vehicle suspension's optimal target system, which has an adaptive ability to the road conditions and vehicle speed in a limited bandwidth. In order to keep the optimal perform... The LQG control system is employed as vehicle suspension's optimal target system, which has an adaptive ability to the road conditions and vehicle speed in a limited bandwidth. In order to keep the optimal performances when the suspension parameters change, a model reference adaptive fuzzy control (MRAFC) strategy is presented. The LQG control system serves as the reference model in the MRAFC system. The simulation results indicate that the presented MRAFC system can adapt to the parameters variation of vehicle suspension and track the optimality of the LQG control system, the presented vehicle suspension MRAFC system has the ability to adapt to road conditions and suspension parameters change. 展开更多
关键词 semi-active suspension LQG control MRAFC control adaptive control
下载PDF
A tunable fuzzy logic controller for the vehicle semi-active suspension system
2
作者 方子帆 DENG +1 位作者 Zhaoxiang 《Journal of Chongqing University》 CAS 2002年第2期16-19,共4页
On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantificati... On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantification method and taking into account the uncertainty, nonlinearity and complexity of parameters for a vehicle suspension system. Simulation to test the performance of this controller is performed under random excitations and definite disturbances of a C grade road, and the effects of time delay and changes of system parameters on the vehicle suspension system are researched. The numerical simulation shows that the performance of the designed tunable fuzzy logic controller is effective, stable and reliable. 展开更多
关键词 模糊逻辑控制器 汽车 半主动悬挂系统 计算机仿真
下载PDF
Advances in Active Suspension Systems for Road Vehicles
3
作者 Min Yu Simos AEvangelou Daniele Dini 《Engineering》 SCIE EI CAS CSCD 2024年第2期160-177,共18页
Active suspension systems(ASSs)have been proposed and developed for a few decades,and have now once again become a thriving topic in both academia and industry,due to the high demand for driving comfort and safety and... Active suspension systems(ASSs)have been proposed and developed for a few decades,and have now once again become a thriving topic in both academia and industry,due to the high demand for driving comfort and safety and the compatibility of ASSs with vehicle electrification and autonomy.Existing review papers on ASSs mainly cover dynamics modeling and robust control;however,the gap between academic research outcomes and industrial application requirements has not yet been bridged,hindering most ASS research knowledge from being transferred to vehicle companies.This paper comprehensively reviews advances in ASSs for road vehicles,with a focus on hardware structures and control strategies.In particular,state-of-the-art ASSs that have been recently adopted in production cars are discussed in detail,including the representative solutions of Mercedes active body control(ABC)and Audi predictive active suspension;novel concepts that could become alternative candidates are also introduced,including series active variable geometry suspension,and the active wheel-alignment system.ASSs with compact structure,small mass increment,low power consumption,high-frequency response,acceptable economic costs,and high reliability are more likely to be adopted by car manufacturers.In terms of control strategies,the development of future ASSs aims not only to stabilize the chassis attitude and attenuate the chassis vibration,but also to enable ASSs to cooperate with other modules(e.g.,steering and braking)and sensors(e.g.,cameras)within a car,and even with high-level decision-making(e.g.,reference driving speed)in the overall transportation system-strategies that will be compatible with the rapidly developing electric and autonomous vehicles. 展开更多
关键词 Active suspension vehicle dynamics Robust control Ride comfort Chassis attitude
下载PDF
Integrated Active Suspension and Anti-Lock Braking Control for Four-Wheel-Independent-Drive Electric Vehicles
4
作者 Ze Zhao Lei Zhang +3 位作者 Xiaoling Ding Zhiqiang Zhang Shaohua Li Liang Gu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期87-98,共12页
This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and ... This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and anti-lock braking system(ABS).First,a longitudinal-vertical coupled vehicle dynamics model is established by integrating a road input model.Then the coupling mechanisms between longitudinal and vertical vehicle dynamics are analyzed.An ASS-ABS integrated control system is proposed,utilizing an H∞controller for ASS to optimize load transfer effect and a neural network sliding mode control for ABS implementation.Finally,the effectiveness of the proposed control scheme is evaluated through comprehensive tests conducted on a hardware-in-loop(HIL)test platform.The HIL test results demonstrate that the proposed control scheme can significantly improve the braking performance and ride comfort compared to conventional ABS control methods. 展开更多
关键词 Four-wheel-independent-drive electric vehicles Active suspension system(ASS) Anti-lock braking system(ABS) Vertical-longitudinal vehicle dynamics
下载PDF
Stochastic sampled-data multi-objective control of active suspension systems for in-wheel motor driven electric vehicles
5
作者 Iftikhar Ahmad Xiaohua Ge Qing-Long Han 《Journal of Automation and Intelligence》 2024年第1期2-18,共17页
This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus... This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles. 展开更多
关键词 Active suspension system Electric vehicles In-wheel motor Stochastic sampling Dynamic dampers Sampled-data control Multi-objective control
下载PDF
Semi-active Sliding Mode Control of Vehicle Suspension with Magneto-rheological Damper 被引量:13
6
作者 ZHANG Hailong WANG Enrong +3 位作者 ZHANG Ning MIN Fuhong SUBASH Rakheja SU Chunyi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期63-75,共13页
The vehicle semi-active suspension with magneto-theological damper(MRD) has been a hot topic since this decade, in which the robust control synthesis considering load variation is a challenging task. In this paper, ... The vehicle semi-active suspension with magneto-theological damper(MRD) has been a hot topic since this decade, in which the robust control synthesis considering load variation is a challenging task. In this paper, a new semi-active controller based upon the inverse model and sliding mode control (SMC) strategies is proposed for the quarter-vehicle suspension with the magneto-rheological (MR) damper, wherein an ideal skyhook suspension is employed as the control reference model and the vehicle sprung mass is considered as an uncertain parameter. According to the asymptotical stability of SMC, the dynamic errors between the plant and reference systems are used to derive the control damping force acquired by the MR quarter-vehicle suspension system. The proposed modified Bouc-wen hysteretic force-velocity (F-v) model and its inverse model of MR damper, as well as the proposed continuous modulation (CM) filtering algorithm without phase shift are employed to convert the control damping force into the direct drive current of the MR damper. Moreover, the proposed semi-active sliding mode controller (SSMC)-based MR quarter-vehicle suspension is systematically evaluated through comparing the time and frequency domain responses of the sprung and unsprung mass displacement accelerations, suspension travel and the tire dynamic force with those of the passive quarter-vehicle suspension, under three kinds of varied amplitude harmonic, rounded pulse and real-road measured random excitations. The evaluation results illustrate that the proposed SSMC can greatly suppress the vehicle suspension vibration due to uncertainty of the load, and thus improve the ride comfort and handling safety. The study establishes a solid theoretical foundation as the universal control scheme for the adaptive semi-active control of the MR full-vehicle suspension decoupled into four MR quarter-vehicle sub-suspension systems. 展开更多
关键词 magneto-rheological damper vehicle suspension multi-objective performance semi-active sliding mode control FILTERING
下载PDF
SEMI-ACTIVE CONTROL OF VEHICLE SUSPENSION WITH MAGNETO-RHEOLOGICAL DAMPERS:PART Ⅰ——CONTROLLER SYNTHESIS AND EVALUATION 被引量:8
7
作者 WANG Enrong YING Liang +2 位作者 WANG Wanjun RAKHEJASubhash SU Chunyi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第1期13-19,共7页
A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, whi... A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, which is modulated by integrating a continuous modulation and an asymmetric damping force generation algorithms, so as to effectively minimize switching and hysteretic effects from the MR-damper. The proposed controller is implemented with a quarter-vehicle MR-suspension model, and its relative response characteristics are thus evaluated in terms of defined performance measures under varying amplitude harmonic, rounded pulse and random excitations. The sensitivity of the semi-active suspension performance to variations in controller parameters is thoroughly evaluated. The results illustrate that the proposed skyhook-based asymmetric semi-active MR-suspension controller has superior robustness on the system parameter variations, and can achieve desirable multi-objective suspension performance. 展开更多
关键词 Magneto-rheological damper Skyhook damping semi-active control vehicle suspension
下载PDF
Skyhook-based Semi-active Control of Full-vehicle Suspension with Magneto-rheological Dampers 被引量:11
8
作者 ZHANG Hailong WANG Enrong +2 位作者 MIN Fuhong SUBASH Rakheja SU Chunyi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期498-505,共8页
The control study of vehicle semi-active suspension with magneto-rheological (MR) dampers has been attracted much attention internationally. However, a simple, real time and easy implementing semi-active controller ha... The control study of vehicle semi-active suspension with magneto-rheological (MR) dampers has been attracted much attention internationally. However, a simple, real time and easy implementing semi-active controller has not been proposed for the MR full-vehicle suspension system, and a systematic analysis method has not been established for evaluating the multi-objective suspension performances of MR full-vehicle vertical, pitch and roll motions. For this purpose, according to the 7-degree of freedom (DOF) fullvehicle dynamic system, a generalized 7-DOF MR and passive full-vehicle dynamic model is set up by employing the modified Boucwen hysteretic force-velocity (F-v) model of the MR damper. A semi-active controller is synthesized to realize independent control of the four MR quarter-vehicle sub-suspension systems in the full-vehicle, which is on the basis of the proposed modified skyhook damping scheme of MR quarter-vehicle sub-suspension system. The proposed controller can greatly simplify the controller design complexity of MR full-vehicle suspension and has merits of easy implementation in real application, wherein only absolute velocities of sprung and unsprung masses with reference to the road surface are required to measure in real time when the vehicle is moving. Furthermore, a systematic analysis method is established for evaluating the vertical, pitch and roll motion properties of both MR and passive full-vehicle suspensions in a more realistic road excitation manner, in which the harmonic, rounded pulse and real road measured random signals with delay time are employed as different road excitations inserted on the front and rear two wheels, by considering the distance between front and rear wheels in full-vehicle. The above excitations with different amplitudes are further employed as the road excitations inserted on left and right two wheels for evaluating the roll motion property. The multi-objective suspension performances of ride comfort and handling safety of the proposed MR full-vehicle suspension are thus thoroughly evaluated by comparing with those of the passive full-vehicle suspension. The results show that the proposed controller can ideally improve multiobjective suspension performances of the ride comfort and handling safety. The proposed harmonic, rounded pulse and real road measured random signals with delay time and asymmetric amplitudes are suitable for accurately analyzing the vertical, pitch and roll motion properties of MR full-vehicle suspension system in a more realistic road excitation manner. This research has important theoretical significance for improving application study on the intelligent MR semi-active suspension. 展开更多
关键词 magneto-rheological damper skyhook policy semi-active control multi-objective performances full-vehicle suspension
下载PDF
SEMI-ACTIVE CONTROL OF VEHICLE SUSPENSION WITH MAGNETO-RHEOLOGICAL DAMPERS PARTⅡ——EVALUATION OF SUSPENSION PERFORMANCE 被引量:5
9
作者 WANG Enrong YING Liang +2 位作者 WANG Wanjun RAKHEJA Subhash SU Chunyi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期45-52,共8页
The design and analysis of an intelligent vehicle suspension with MR dampers should address hybrid semi-active control goals, such as rejection of current-switching discontinuity and MR-damper hysteresis, asymmetric d... The design and analysis of an intelligent vehicle suspension with MR dampers should address hybrid semi-active control goals, such as rejection of current-switching discontinuity and MR-damper hysteresis, asymmetric damping from the symmetric MR-damper design, robustness on the vehicle operation parameter uncertainties and consideration of essential multiple suspension goals. Following the proposed skyhook-based asymmetric semi-active controller (Part I ) for achieving the above goals, herein, a set of suspension performance measures and three kinds of varying amplitude harmonic, rounded pulse and really measured random excitations are systematically defined, and the sensitivity of quarter-vehicle MR-suspension performance to variations in operating conditions is thoroughly analyzed. The results illustrate that the proposed skyhook-based semi-active MR-suspension in the asymmetric mode yields relatively superior dynamic responses to meet the multiple suspension performances of ride, rattle space, road-holding and dynamic tire force transmitted to the pavement, and has desirable robustness on variations in operating conditions of vehicle load and speed and the road roughness. 展开更多
关键词 Magneto-rheological damper Asymmetric damping semi-active control vehicle suspension Multi-objective performance
下载PDF
Adaptive Backstepping Control Design for Semi-Active Suspension of Half-Vehicle With Magnetorheological Damper 被引量:7
10
作者 Khalid El Majdoub Fouad Giri Fatima-Zahra Chaoui 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第3期582-596,共15页
This paper investigates the problem of controlling half-vehicle semi-active suspension system involving a magnetorheological(MR)damper.This features a hysteretic behavior that is presently captured through the nonline... This paper investigates the problem of controlling half-vehicle semi-active suspension system involving a magnetorheological(MR)damper.This features a hysteretic behavior that is presently captured through the nonlinear Bouc-Wen model.The control objective is to regulate well the heave and the pitch motions of the chassis despite the road irregularities.The difficulty of the control problem lies in the nonlinearity of the system model,the uncertainty of some of its parameters,and the inaccessibility to measurements of the hysteresis internal state variables.Using Lyapunov control design tools,we design two observers to get online estimates of the hysteresis internal states and a stabilizing adaptive state-feedback regulator.The whole adaptive controller is formally shown to meet the desired control objectives.This theoretical result is confirmed by several simulations demonstrating the supremacy of the latter compared to the skyhook control and passive suspension. 展开更多
关键词 Adaptive control backstepping control Bouc-Wen model half vehicle model magnetorheological(MR)damper semiactive suspension skyhook control state observation
下载PDF
Investigation of Semi-Active Hydro-Pneumatic Suspension for a Heavy Vehicle Based on Electro-Hydraulic Proportional Valve 被引量:2
11
作者 Wenchao Yue Shoucheng Li Xiaojun Zou 《World Journal of Engineering and Technology》 2017年第4期696-706,共11页
Hydro-pneumatic suspension is widely used in heavy vehicles due to its nonlinear characteristics of stiffness and damping. However, the conventional passive hydro-pneumatic suspension can’t adjust parameters accordin... Hydro-pneumatic suspension is widely used in heavy vehicles due to its nonlinear characteristics of stiffness and damping. However, the conventional passive hydro-pneumatic suspension can’t adjust parameters according to the complicated road environment of heavy vehicles to fulfill the requirements of the vehicle ride comfort. In this paper, a semi-active hydro-pneumatic suspension system based on the electro-hydraulic proportional valve control is proposed, and fuzzy control is used as the control strategy to adjust the?damping force of the semi-active hydro-pneumatic suspension. A 1/4?semi-active hydro-pneumatic suspension model is established, which is co-simulated with AMESim and MATLAB/Simulink. The co-simulation results show that the semi-active hydro-pneumatic suspension system can significantly reduce vibration of the vehicle body, and improve the suspension performance comparing with passive hydro-pneumatic suspension. 展开更多
关键词 Hydro-Pneumatic suspension semi-active Control CO-SIMULATION ELECTRO-HYDRAULIC Proportional VALVE
下载PDF
SEMI-ACTIVE CONTROL OF VEHICLE SUSPENSION WITH MAGNETO-RHEOLOGICAL DAMPERS:PART III—EXPERIMENTAL VALIDATION 被引量:2
12
作者 WANG Enrong YING Liang +2 位作者 WANG Wanjun RAKHEJA Subhash SU Chunyi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期56-63,共8页
A hardware-in-the-loop (HIL) test and simulation platform is developed in the laboratory, so as to validate the performance characteristics of the proposed skyhook-based asymmetric semi-active controller in Part I, ... A hardware-in-the-loop (HIL) test and simulation platform is developed in the laboratory, so as to validate the performance characteristics of the proposed skyhook-based asymmetric semi-active controller in Part I, and examine the validity of the proposed MR-damper model in a system surrounding. A real-time monitor is designed to assess and monitor the responses of the quarter-vehicle model in the HIL platform, and to select the excitation, controller synthesis, and the output displays. A drive current circuit hardware employing PID feedback technique is developed to compensate for the time delays from the servo-controller and drive current circuit, in which a small resistance is integrated in the current amplifier circuit to provide the feedback signal. The experiments were performed to measure the responses of the quarter-vehicle MR-suspension models with fixed current and the proposed semi-active MR-damping variations, under harmonic, rounded pulse and random road excitations. The measured data were compared with the corresponding model results to examine the model and controller validity, and revealed generally good agreements in the model and tested results and very little sensitivity of the tested responses to variations in the sprung mass. The HIL test results validate the effectiveness of the proposed skyhook-based semi-active asymmetric controller and its high robustness against the vehicle load variations in view of the intelligent vehicle suspension design. 展开更多
关键词 Magneto-rheological damper vehicle suspension Hardware-in-the-loop simulation
下载PDF
Delay-dependent H_(2)/H_(∞) Control for Vehicle Magneto-rheological Semi-active Suspension 被引量:1
13
作者 CHEN Wuwei ZHU Maofei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第6期1028-1034,共7页
The exist researches of the magneto-rheological semi-active suspension(MSAS) control mainly focus on the design of control laws,which aim at obtaining an optimal control strategy to improve the ride comfort and handli... The exist researches of the magneto-rheological semi-active suspension(MSAS) control mainly focus on the design of control laws,which aim at obtaining an optimal control strategy to improve the ride comfort and handling stability.In the controller design,the stability of the MSAS system cannot be confirmed owing to the control input time delay considered little.In this paper,a quarter vehicle MSAS model with time-delay is built.Therefore,through formulating the sprung mass acceleration suitably as the optimization object,suspension deflection and tyre dynamic load and coulomb damping force as the constraint objects,with considering the control input time-delay,a delay-dependent state feedback H2/H∞ controller is designed.According to Lyapunov-Krasovskii functional theory,the sufficient conditions for asymptotic stability and the existence of delay-dependent H2/H∞ controller are obtained,and the controller design is transformed into the minimization problem for linear function through linear matrix inequality(LMI).Random road excitation simulations and experiments are carried out.The simulation and experiment results show that the design can preserve the closed-loop stability and achieve the performances for MSAS system in spite of the existence of the control input time-delay.The present study can provide an important basis and method for research on time-delay problem in MSAS and other chassis subsystems. 展开更多
关键词 magneto-rheological semi-active suspension(MSAS) time-delay delay-dependent H2/H∞ state feedback control linear matrix inequality(LMI)
下载PDF
Neuron PI control for semi-active suspension system of tracked vehicle 被引量:2
14
作者 曾谊晖 刘少军 鄂加强 《Journal of Central South University》 SCIE EI CAS 2011年第2期444-450,共7页
A neuron proportion integration (PI) control strategy for semi-active suspension system of tracked vehicle was proposed based on its unique structure and the multiple and complex environment of the driving traffic. An... A neuron proportion integration (PI) control strategy for semi-active suspension system of tracked vehicle was proposed based on its unique structure and the multiple and complex environment of the driving traffic. An adaptive genetic algorithm is used to optimize the parameters of the neuron PI controller. The simulation result of the neuron PI control for semi-active suspension system of tracked vehicle indicates that the vertical amplitude,pitch angle and vertical acceleration of the vehicle are well controlled. The root mean square (RMS) of the vertical amplitude decreases by 37.2%,and 45.2% for the pitch angle,38.6% for the vertical acceleration. The research of neuron PI control experiment for the semi-active suspension system of the tracked vehicle model mining in benthal indicates that the RMS of the weight acceleration vibrating along the vertical direction decreases by 29.5%,the power spectral density resonance peak of the acceleration of the car body decreases by 23.8%. 展开更多
关键词 半主动悬架系统 履带车辆 PI控制 神经元 垂直加速度 自适应遗传算法 主动悬挂系统 控制器参数
下载PDF
Fuzzy Logic Control for Semi-Active Suspension System of Tracked Vehicle
15
作者 管继富 顾亮 +1 位作者 侯朝桢 王国丽 《Journal of Beijing Institute of Technology》 EI CAS 2004年第2期113-117,共5页
The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative ... The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative are used as the inputs of the fuzzy logic controller, and the fuzzy logic controller output determines the semi-active suspension controllable damping force. The fuzzy logic controller is to minimize the mean square root of acceleration of the driver's seat. The control forces of controllable dampers behind the first road wheel are obtained by time delay, and the delay times are determined by the vehicle speed and axles distances. The simulation results show that this control method can decrease the acceleration of driver's seat and the suspension travel of the first road wheel, the ride quality is improved obviously. 展开更多
关键词 tracked vehicle semi-active suspension fuzzy logic control
下载PDF
Skyhook Surface Sliding Mode Control on Semi-Active Vehicle Suspension System for Ride Comfort Enhancement
16
作者 Yi Chen 《Engineering(科研)》 2009年第1期23-32,共10页
A skyhook surface sliding mode control method was proposed and applied to the control on the semi-active vehicle suspension system for its ride comfort enhancement. A two degree of freedom dynamic model of a vehicle s... A skyhook surface sliding mode control method was proposed and applied to the control on the semi-active vehicle suspension system for its ride comfort enhancement. A two degree of freedom dynamic model of a vehicle semi-active suspension system was given, which focused on the passenger’s ride comfort perform-ance. A simulation with the given initial conditions has been devised in MATLAB/SIMULINK. The simula-tion results were showing that there was an enhanced level of ride comfort for the vehicle semi-active sus-pension system with the skyhook surface sliding mode controller. 展开更多
关键词 SLIDING Mode CONTROL Skyhook DAMPER Fuzzy Logic CONTROL semi-active suspension System
下载PDF
Semi-active control of a vehicle suspension using magneto-rheological damper
17
作者 蒋学争 王炅 胡红生 《Journal of Central South University》 SCIE EI CAS 2012年第7期1839-1845,共7页
A semi-active magneto-rheological (MR) damper was experimentally investigated and compared to an original equipment manufacturer (OEM) damper for a passenger vehicle,by using a quarter car models. A full-scale two-deg... A semi-active magneto-rheological (MR) damper was experimentally investigated and compared to an original equipment manufacturer (OEM) damper for a passenger vehicle,by using a quarter car models. A full-scale two-degree-of-freedom quarter car experimental set-up was constructed to study the vehicle suspension. On-off skyhook controller and Fuzzy-Lyapunov skyhook controller (FLSC) were employed to control the input current for MR damper so as to achieve the desired damping force. Tests were done to evaluate the ability of MR damper for controlling vehicle vibration. Test results show that the semi-active MR vehicle suspension vibration control system is feasible. In comparison with OEM damper,on-off and FLSC controlled MR dampers can effectively reduce the acceleration of vehicle sprung mass by about 15% and 24%,respectively. 展开更多
关键词 磁流变阻尼器 半主动控制 汽车悬架 LYAPUNOV 振动控制系统 原始设备制造商 阻尼控制器 客运车辆
下载PDF
Analysis of the Material Properties of Vehicle Suspension Coil Spring
18
作者 Issifu Imoro Jacob Kwaku Nkrumah +1 位作者 Baba Ziblim Abdul-Hamid Mohammed 《World Journal of Engineering and Technology》 2023年第4期827-858,共32页
The suspension coil spring is one of the most important components in a vehicle suspension system. Its primary function is to absorb the vibrational shocks that are occasioned by irregular road surface to provide the ... The suspension coil spring is one of the most important components in a vehicle suspension system. Its primary function is to absorb the vibrational shocks that are occasioned by irregular road surface to provide the vehicle with stability and ride comfort. The main objective of this study is to design a suspension coil spring made of structural steel for light duty vehicles with the aim of weight and cost reduction. This study was motivated by the government of Ghana’s actions to industrialise the automotive sector of the country through government policies and programs. The study made use of high carbon steel and low carbon steel as the control materials and structural steel as the implementing material. This was done to determine the suitability of structural steel for vehicle suspension coil spring. The study analysed parameters such as total deformation, equivalent Von Mises stress, maximum shear stress, and safety factor in the static structural analysis. The fatigue analysis also analysed parameters such as fatigue life and fatigue alternating stress. The results of the study revealed that the suspension spring made of structural steel has superior properties against all the parameters set for this study apart from deformation. The two control materials that are known for suspension coil spring design and manufacture have better properties to withstand deformation than the implementing material. 展开更多
关键词 suspension Spring Unsprung Mass Fatigue Analysis Structural Analysis Ride Comfort vehicle Stability
下载PDF
Improving rail vehicle dynamic performance with active suspension
19
作者 Sebastian Stichel Rickard Persson Rocco Giossi 《High-Speed Railway》 2023年第1期23-30,共8页
Today,it is difficult to further improve the dynamic performance of rail vehicles with conventional passive suspension.Also,simplified vehicle respectively running gear layouts that significantly could reduce vehicle ... Today,it is difficult to further improve the dynamic performance of rail vehicles with conventional passive suspension.Also,simplified vehicle respectively running gear layouts that significantly could reduce vehicle weights are difficult to realize with modern requirements on passenger vibration comfort and wheel and rail wear.Active suspension is a powerful technology that can improve the vehicle dynamic performance and make simplified vehicle concepts possible.The KTH Railway group has,together with external partners,investigated active suspensions both numerically and experimentally for 15 years.The paper provides a summary of the activities and the most important findings.One major project carried out in close collaboration with the vehicle manufacturer Bombardier and the Swedish Transport Administration was the Green Train project,where a 2-car EMU test bench was used to demonstrate different active technologies.In ongoing projects,a concept of single axle-single suspension running gear is developed with active suspension both for comfort improvement and reduced wheel wear in curves.The results from on-track tests in the Green Train project were so good that the technology is now implemented in commercial trains and the simulation results for the single-axle running gear are very promising. 展开更多
关键词 Rail vehicle dynamics Active suspension Ride comfort Active wheelset steering Wheel wear
下载PDF
Vehicle Ride Comfort Based on Matching Suspension System 被引量:8
20
作者 SHI Jianpeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第2期271-276,共6页
The existing investigations of vehicle ride comfort mainly include motion characteristics analysis based on creating a multi-body dynamic simulation model,and the parameters analysis to improve the suspension control ... The existing investigations of vehicle ride comfort mainly include motion characteristics analysis based on creating a multi-body dynamic simulation model,and the parameters analysis to improve the suspension control for the target.In the study of creating multi-body dynamics simulation models,there is usually without considering calibration and test verification,which make it difficult to ensure the production of engineering.In the study of improving the suspension control parameters for the target,there is a lack of systematic match about comfortable and human characteristics,so it is difficult to implement in the field of driving and leading the vehicle design.In this paper,based on the different characteristic of suspension system that effects on the vehicle ride comfort, according to the suspension system dynamic mechanism,the research methods of vehicle road test,bench test and CAE simulation is used,at the same time,several sensitivity analysis of vehicle ride comfort related to suspension stiffness and damping and speed is made. As a result,the key suspension systematic parameters are given that have important impact on vehicle ride comfort.Through matching parameters,a calibration analysis of suspension system based on human comfort is obtained.The analysis results show that the analysis methods for the design target of making the vehicle with best comfort are effective.On the basis of the theory study,five suspension parameter matching principles are explored to promise the vehicle with perfect ride comfort,which also provide theoretical basis and design methods for the passenger car best match of suspension system stiffness and damping.The research results have the promotional value of practicability and a wide range of engineering application. 展开更多
关键词 AUTOMOBILE vehicle ride comfort suspension system MATCHING
下载PDF
上一页 1 2 86 下一页 到第
使用帮助 返回顶部