期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Lateral stability region conservativeness estimation and torque distribution for FWIA electric vehicle steering 被引量:5
1
作者 YIN Guo Dong JIN Xian Jian +1 位作者 QING Zhi Yong BIAN Chen Tong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第4期669-676,共8页
Estimation of the lateral stability region and torque distribution on steering is very important to improve stability in lateral handling for all wheel drive electric vehicles.Based on the built-nonlinear vehicle dyna... Estimation of the lateral stability region and torque distribution on steering is very important to improve stability in lateral handling for all wheel drive electric vehicles.Based on the built-nonlinear vehicle dynamic model,the lateral stability region of the vehicle related to steering is estimated using Lyapunov function.We obtained stable equilibrium points of non-straight driving according to the estimated lateral stability region and also reconstructed the Lyapunov function matrix,which proved that the closed-loop system composed of yaw rate and lateral velocity is satisfied with negative definite property.In addition,the designed controller dynamically allocates the drive torque in terms of the vertical load and slip rate of the four wheels.The simulation results show that the estimated lateral stability region and the designed controller are satisfactory in handling stability performance against different roads and vehicle parameters. 展开更多
关键词 four-wheel independently actuated electric vehicle torque distribution vehicle steering stability region estimation
原文传递
STEERING SAFETY EVALUATION OF DRIVER VEHICLE CLOSED LOOP SYSTEM WITH RANDOM ROAD INPUT 被引量:1
2
作者 Zhao Youqun Shandong Institute of Technology Guo Konghui Zhang Guiyu Jilin University of Technology Shandong Institute of Technology 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1999年第4期282-287,共6页
The response simulation is studied and the steering safety is evaluated by using finer integration method for driver vehicle closed loop system with stationary random road input.This algorithm not only is precise, b... The response simulation is studied and the steering safety is evaluated by using finer integration method for driver vehicle closed loop system with stationary random road input.This algorithm not only is precise, but also can shorten the evaluation period of steering safety and reduce the tremendous cost for real vehicle testing.The response simulation and the vehicle steering safety evaluation are also studied for the closed loop system with evolutionary random road input.The study can more truly evaluate vehicle driving for including the slowly varying of vehicle velocity with time. 展开更多
关键词 CLOSED loop system Evaluation Random Safety vehicle steer ability
全文增补中
Kinematic characterization and optimization of vehicle front-suspension design based on ADAMS 被引量:2
3
作者 于海波 《Journal of Chongqing University》 CAS 2008年第1期35-40,共6页
To improve the suspension performance and steering stability of light vehicles, we built a kinematic simulation model of a whole independent double-wishbone suspension system by using ADAMS software, created random ex... To improve the suspension performance and steering stability of light vehicles, we built a kinematic simulation model of a whole independent double-wishbone suspension system by using ADAMS software, created random excitations of the test platforms of respectively the left and the right wheels according to actual running conditions of a vehicle, and explored the changing patterns of the kinematic characteristic parameters in the process of suspension motion. The irrationality of the suspension guiding mechanism design was pointed out through simulation and analysis, and the existent problems of the guiding mechanism were optimized and calculated. The results show that all the front-wheel alignment parameters, including the camber, the toe, the caster and the inclination, only slightly change within corresponding allowable ranges in design before and after optimization. The optimization reduces the variation of the wheel-center distance from 47.01 mm to a change of 8.28 mm within the allowable range of ?10 mm to 10 mm, promising an improvement of the vehicle steering stability. The optimization also confines the front-wheel sideways slippage to a much smaller change of 2.23 mm; this helps to greatly reduce the wear of tires and assure the straight running stability of the vehicle. 展开更多
关键词 vehicle suspension vehicle steering riding qualities independent double-wishbone suspension kinematic characteristic parameter wheel-center distance front-wheel sidewavs slippage
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部