Object detection(OD)in remote sensing images(RSI)acts as a vital part in numerous civilian and military application areas,like urban planning,geographic information system(GIS),and search and rescue functions.Vehicle ...Object detection(OD)in remote sensing images(RSI)acts as a vital part in numerous civilian and military application areas,like urban planning,geographic information system(GIS),and search and rescue functions.Vehicle recognition from RSIs remained a challenging process because of the difficulty of background data and the redundancy of recognition regions.The latest advancements in deep learning(DL)approaches permit the design of effectual OD approaches.This study develops an Artificial Ecosystem Optimizer with Deep Convolutional Neural Network for Vehicle Detection(AEODCNN-VD)model on Remote Sensing Images.The proposed AEODCNN-VD model focuses on the identification of vehicles accurately and rapidly.To detect vehicles,the presented AEODCNN-VD model employs single shot detector(SSD)with Inception network as a baseline model.In addition,Multiway Feature Pyramid Network(MFPN)is used for handling objects of varying sizes in RSIs.The features from the Inception model are passed into theMFPNformultiway andmultiscale feature fusion.Finally,the fused features are passed into bounding box and class prediction networks.For enhancing the detection efficiency of the AEODCNN-VD approach,AEO based hyperparameter optimizer is used,which is stimulated by the energy transfer strategies such as production,consumption,and decomposition in an ecosystem.The performance validation of the presentedmethod on benchmark datasets showed promising performance over recent DL models.展开更多
The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evalu...The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.展开更多
The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resoluti...The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.展开更多
To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model...To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model for remote sensing images on complex backgrounds,called DI-YOLO,based on You Only Look Once v7-tiny(YOLOv7-tiny).Firstly,to enhance the model’s ability to capture irregular-shaped objects and deformation features,as well as to extract high-level semantic information,deformable convolutions are used to replace standard convolutions in the original model.Secondly,a Content Coordination Attention Feature Pyramid Network(CCA-FPN)structure is designed to replace the Neck part of the original model,which can further perceive relationships between different pixels,reduce feature loss in remote sensing images,and improve the overall model’s ability to detect multi-scale objects.Thirdly,an Implicitly Efficient Decoupled Head(IEDH)is proposed to increase the model’s flexibility,making it more adaptable to complex detection tasks in various scenarios.Finally,the Smoothed Intersection over Union(SIoU)loss function replaces the Complete Intersection over Union(CIoU)loss function in the original model,resulting in more accurate prediction of bounding boxes and continuous model optimization.Experimental results on the High-Resolution Remote Sensing Detection(HRRSD)dataset demonstrate that the proposed DI-YOLO model outperforms mainstream target detection algorithms in terms of mean Average Precision(mAP)for optical remote sensing image detection.Furthermore,it achieves Frames Per Second(FPS)of 138.9,meeting fast and accurate detection requirements.展开更多
alient object detection aims at identifying the visually interesting object regions that are consistent with human perception. Multispectral remote sensing images provide rich radiometric information in revealing the ...alient object detection aims at identifying the visually interesting object regions that are consistent with human perception. Multispectral remote sensing images provide rich radiometric information in revealing the physical properties of the observed objects, which leads to great potential to perform salient object detection for remote sensing images. Conventional salient object detection methods often employ handcrafted features to predict saliency by evaluating the pixel-wise or superpixel-wise contrast. With the recent use of deep learning framework, in particular, fully convolutional neural networks, there has been profound progress in visual saliency detection. However, this success has not been extended to multispectral remote sensing images, and existing multispectral salient object detection methods are still mainly based on handcrafted features, essentially due to the difficulties in image acquisition and labeling. In this paper, we propose a novel deep residual network based on a top-down model, which is trained in an end-to-end manner to tackle the above issues in multispectral salient object detection. Our model effectively exploits the saliency cues at different levels of the deep residual network. To overcome the limited availability of remote sensing images in training of our deep residual network, we also introduce a new spectral image reconstruction model that can generate multispectral images from RGB images. Our extensive experimental results using both multispectral and RGB salient object detection datasets demonstrate a significant performance improvement of more than 10% improvement compared with the state-of-the-art methods.展开更多
Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems,...Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems, including spectral, polarization, and infrared technologies, there is still a lack of effective real-time method for accurately detecting small-size and high-efficient camouflaged people in complex real-world scenes. Here, this study proposes a snapshot multispectral image-based camouflaged detection model, multispectral YOLO(MS-YOLO), which utilizes the SPD-Conv and Sim AM modules to effectively represent targets and suppress background interference by exploiting the spatial-spectral target information. Besides, the study constructs the first real-shot multispectral camouflaged people dataset(MSCPD), which encompasses diverse scenes, target scales, and attitudes. To minimize information redundancy, MS-YOLO selects an optimal subset of 12 bands with strong feature representation and minimal inter-band correlation as input. Through experiments on the MSCPD, MS-YOLO achieves a mean Average Precision of 94.31% and real-time detection at 65 frames per second, which confirms the effectiveness and efficiency of our method in detecting camouflaged people in various typical desert and forest scenes. Our approach offers valuable support to improve the perception capabilities of unmanned aerial vehicles in detecting enemy forces and rescuing personnel in battlefield.展开更多
Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential....Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.展开更多
The Earth observation remote sensing images can display ground activities and status intuitively,which plays an important role in civil and military fields.However,the information obtained from the research only from ...The Earth observation remote sensing images can display ground activities and status intuitively,which plays an important role in civil and military fields.However,the information obtained from the research only from the perspective of images is limited,so in this paper we conduct research from the perspective of video.At present,the main problems faced when using a computer to identify remote sensing images are:They are difficult to build a fixed regular model of the target due to their weak moving regularity.Additionally,the number of pixels occupied by the target is not enough for accurate detection.However,the number of moving targets is large at the same time.In this case,the main targets cannot be recognized completely.This paper studies from the perspective of Gestalt vision,transforms the problem ofmoving target detection into the problem of salient region probability,and forms a Saliency map algorithm to extract moving targets.On this basis,a convolutional neural network with global information is constructed to identify and label the target.And the experimental results show that the algorithm can extract moving targets and realize moving target recognition under many complex conditions such as target’s long-term stay and small-amplitude movement.展开更多
How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classif...How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.展开更多
In image processing, one of the most important steps is image segmentation. The objects in remote sensing images often have to be detected in order toperform next steps in image processing. Remote sensing images usua...In image processing, one of the most important steps is image segmentation. The objects in remote sensing images often have to be detected in order toperform next steps in image processing. Remote sensing images usually havelarge size and various spatial resolutions. Thus, detecting objects in remote sensing images is very complicated. In this paper, we develop a model to detectobjects in remote sensing images based on the combination of picture fuzzy clustering and MapReduce method (denoted as MPFC). Firstly, picture fuzzy clustering is applied to segment the input images. Then, MapReduce is used to reducethe runtime with the guarantee of quality. To convert data for MapReduce processing, two new procedures are introduced, including Map_PFC and Reduce_PFC.The formal representation and details of two these procedures are presented in thispaper. The experiments on satellite image and remote sensing image datasets aregiven to evaluate proposed model. Validity indices and time consuming are usedto compare proposed model to picture fuzzy clustering model. The values ofvalidity indices show that picture fuzzy clustering integrated to MapReduce getsbetter quality of segmentation than using picture fuzzy clustering only. Moreover,on two selected image datasets, the run time of MPFC model is much less thanthat of picture fuzzy clustering.展开更多
This paper introduces some of the image processing techniques developed in the Canada Research Chair in Advanced Geomatics Image Processing Laboratory (CRC-AGIP Lab) and in the Department of Geodesy and Geomatics Engi...This paper introduces some of the image processing techniques developed in the Canada Research Chair in Advanced Geomatics Image Processing Laboratory (CRC-AGIP Lab) and in the Department of Geodesy and Geomatics Engineering (GGE) at the University of New Brunswick (UNB), Canada. The techniques were developed by innovatively/“smartly” utilizing the characteristics of the available very high resolution optical remote sensing images to solve important problems or create new applications in photogrammetry and remote sensing. The techniques to be introduced are: automated image fusion (UNB-PanSharp), satellite image online mapping, street view technology, moving vehicle detection using single set satellite imagery, supervised image segmentation, image matching in smooth areas, and change detection using images from different viewing angles. Because of their broad application potential, some of the techniques have made a global impact, and some have demonstrated the potential for a global impact.展开更多
Shadow detection is a crucial task in high-resolution remote-sensing image processing. Various shadow detection methods have been explored during the last decades. These methods did improve the detection accuracy but ...Shadow detection is a crucial task in high-resolution remote-sensing image processing. Various shadow detection methods have been explored during the last decades. These methods did improve the detection accuracy but are still not robust enough to get satisfactory results for failing to extract enough information from the original images. To take full advantage of various features of shadows, a new method combining edges information with the spectral and spatial information is proposed in this paper. As known, edge is one of the most important characteristics in the high-resolution remote-sensing images. Unfortunately, in shadow detection, it is a high-risk strategy to determine whether a pixel is the edge or not strictly because intensity values on shadow boundaries are always between those in shadow and non-shadow areas. Therefore, a soft edge description model is developed to describe the degree of each pixel belonging to the edges or not. Sequentially, the soft edge description is incorporating to a fuzzy clustering procedure based on HMRF (Hidden Markov Random Fields), in which more appropriate spatial contextual information can be used. More concretely, it consists of two components: the soft edge description model and an iterative shadow detection algorithm. Experiments on several remote sensing images have shown that the proposed method can obtain more accurate shadow detection results.展开更多
As being an effective real-time method of monitoring vehicle emissions on-road, a remote sensing system based on the tunable diode laser (TDL) technology was presented, and the key technologies were discussed. A fie...As being an effective real-time method of monitoring vehicle emissions on-road, a remote sensing system based on the tunable diode laser (TDL) technology was presented, and the key technologies were discussed. A field test in Guangzhou(Guangdong, China) was performed and was found that the factors, such as slope, instantaneous speed and acceleration, had significant influence on the detectable rate of the system. Based on the results, the proposal choice of testing site was presented.展开更多
There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge ...There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge detection method for remote sensing image based on variable structuring element is proposed. Firstly, the structuring elements with different scales and multiple directions are constructed according to the diversity of remote sensing imagery targets. In order to suppress the noise of the target background and highlight the edge of the image target in the remote sensing image by adaptive Top hat and Bottom hat transform, the corresponding adaptive morphological operations are constructed based on variable structuring elements; Secondly, adaptive morphological edge detection is used to obtain multiple images with different scales and directional edge features; Finally, the image edges are obtained by weighted summation of each direction edge, and then the least square is used to fit the edges for accurate location of the edge contour of the target. The experimental results show that the proposed method not only can detect the complete edge of remote sensing image, but also has high edge detection accuracy and superior anti-noise performance. Compared with classical edge detection and the morphological edge detection with a fixed single structuring element, the proposed method performs better in edge detection effect, and the accuracy of detection can reach 95 %展开更多
In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have differ...In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes.展开更多
Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in th...Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in the Majiliang mining area.The thermal field distributions of this area in 2000,2002,2006,2007,and 2009 were obtained using Landsat TM/ETM.The changes in the distribution were then analyzed to approximate the locations of the coal fires.Through UAV imagery employed at a very high resolution(0.2 m),the texture information,linear features,and brightness of the ground fissures in the coal fire area were determined.All these data were combined to build a knowledge model of determining fissures and were used to support underground coal fire detection.An infrared thermal imager was used to map the thermal field distribution of areas where coal fire is serious.Results were analyzed to identify the hot spot trend and the depth of the burning point.展开更多
Remote sensing image object detection is one of the core tasks of remote sensing image processing.In recent years,with the development of deep learning,great progress has been made in object detection in remote sensin...Remote sensing image object detection is one of the core tasks of remote sensing image processing.In recent years,with the development of deep learning,great progress has been made in object detection in remote sensing.However,the problems of dense small targets,complex backgrounds and poor target positioning accuracy in remote sensing images make the detection of remote sensing targets still difficult.In order to solve these problems,this research proposes a remote sensing image object detection algorithm based on improved YOLOX-S.Firstly,the Efficient Channel Attention(ECA)module is introduced to improve the network's ability to extract features in the image and suppress useless information such as background;Secondly,the loss function is optimized to improve the regression accuracy of the target bounding box.We evaluate the effectiveness of our algorithm on the NWPU VHR-10 remote sensing image dataset,the experimental results show that the detection accuracy of the algorithm can reach 95.5%,without increasing the amount of parameters.It is significantly improved compared with that of the original YOLOX-S network,and the detection performance is much better than that of some other mainstream remote sensing image detection methods.Besides,our method also shows good generalization detection performance in experiments on aircraft images in the RSOD dataset.展开更多
Most of the current object detection algorithms use pretrained models that are trained on ImageNet and then fine-tuned in the network,which can achieve good performance in terms of general object detectors.However,in ...Most of the current object detection algorithms use pretrained models that are trained on ImageNet and then fine-tuned in the network,which can achieve good performance in terms of general object detectors.However,in the field of remote sensing image object detection,as pretrained models are significantly different from remote sensing data,it is meaningful to explore a train-fromscratch technique for remote sensing images.This paper proposes an object detection framework trained from scratch,SRS-Net,and describes the design of a densely connected backbone network to provide integrated hidden layer supervision for the convolution module.Then,two necessary improvement principles are proposed:studying the role of normalization in the network structure,and improving data augmentation methods for remote sensing images.To evaluate the proposed framework,we performed many ablation experiments on the DIOR,DOTA,and AS datasets.The results show that whether using the improved backbone network,the normalization method or training data enhancement strategy,the performance of the object detection network trained from scratch increased.These principles compensate for the lack of pretrained models.Furthermore,we found that SRS-Net could achieve similar to or slightly better performance than baseline methods,and surpassed most advanced general detectors.展开更多
The following article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published papers. The scientific com...The following article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published papers. The scientific community takes a very strong view on this matter, and the Journal of Geographic Information System treats all unethical behavior such as plagiarism seriously. This paper published in Vol.4 No.3 273-278, 2012, has been removed from this site.展开更多
Remote sensing and deep learning are being widely combined in tasks such as urban planning and disaster prevention.However,due to interference occasioned by density,overlap,and coverage,the tiny object detection in re...Remote sensing and deep learning are being widely combined in tasks such as urban planning and disaster prevention.However,due to interference occasioned by density,overlap,and coverage,the tiny object detection in remote sensing images has always been a difficult problem.Therefore,we propose a novel TO–YOLOX(Tiny Object–You Only Look Once)model.TO–YOLOX possesses a MiSo(Multiple-in-Singleout)feature fusion structure,which exhibits a spatial-shift structure,and the model balances positive and negative samples and enhances the information interaction pertaining to the local patch of remote sensing images.TO–YOLOX utilizes an adaptive IOU-T(Intersection Over Uni-Tiny)loss to enhance the localization accuracy of tiny objects,and it applies attention mechanism Group-CBAM(group-convolutional block attention module)to enhance the perception of tiny objects in remote sensing images.To verify the effectiveness and efficiency of TO–YOLOX,we utilized three aerial-photography tiny object detection datasets,namely VisDrone2021,Tiny Person,and DOTA–HBB,and the following mean average precision(mAP)values were recorded,respectively:45.31%(+10.03%),28.9%(+9.36%),and 63.02%(+9.62%).With respect to recognizing tiny objects,TO–YOLOX exhibits a stronger ability compared with Faster R-CNN,RetinaNet,YOLOv5,YOLOv6,YOLOv7,and YOLOX,and the proposed model exhibits fast computation.展开更多
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R136)PrincessNourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4210118DSR28).
文摘Object detection(OD)in remote sensing images(RSI)acts as a vital part in numerous civilian and military application areas,like urban planning,geographic information system(GIS),and search and rescue functions.Vehicle recognition from RSIs remained a challenging process because of the difficulty of background data and the redundancy of recognition regions.The latest advancements in deep learning(DL)approaches permit the design of effectual OD approaches.This study develops an Artificial Ecosystem Optimizer with Deep Convolutional Neural Network for Vehicle Detection(AEODCNN-VD)model on Remote Sensing Images.The proposed AEODCNN-VD model focuses on the identification of vehicles accurately and rapidly.To detect vehicles,the presented AEODCNN-VD model employs single shot detector(SSD)with Inception network as a baseline model.In addition,Multiway Feature Pyramid Network(MFPN)is used for handling objects of varying sizes in RSIs.The features from the Inception model are passed into theMFPNformultiway andmultiscale feature fusion.Finally,the fused features are passed into bounding box and class prediction networks.For enhancing the detection efficiency of the AEODCNN-VD approach,AEO based hyperparameter optimizer is used,which is stimulated by the energy transfer strategies such as production,consumption,and decomposition in an ecosystem.The performance validation of the presentedmethod on benchmark datasets showed promising performance over recent DL models.
基金supported by the National Natural Science Foundation of China(Grant Nos.42090054,41931295)the Natural Science Foundation of Hubei Province of China(2022CFA002)。
文摘The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.
基金National Natural Science Foundation of China(No.41871305)National Key Research and Development Program of China(No.2017YFC0602204)+2 种基金Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUGQY1945)Open Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education and the Fundamental Research Funds for the Central Universities(No.GLAB2019ZR02)Open Fund of Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources,China(No.KF-2020-05-068)。
文摘The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.
基金Funding for this research was provided by 511 Shaanxi Province’s Key Research and Development Plan(No.2022NY-087).
文摘To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model for remote sensing images on complex backgrounds,called DI-YOLO,based on You Only Look Once v7-tiny(YOLOv7-tiny).Firstly,to enhance the model’s ability to capture irregular-shaped objects and deformation features,as well as to extract high-level semantic information,deformable convolutions are used to replace standard convolutions in the original model.Secondly,a Content Coordination Attention Feature Pyramid Network(CCA-FPN)structure is designed to replace the Neck part of the original model,which can further perceive relationships between different pixels,reduce feature loss in remote sensing images,and improve the overall model’s ability to detect multi-scale objects.Thirdly,an Implicitly Efficient Decoupled Head(IEDH)is proposed to increase the model’s flexibility,making it more adaptable to complex detection tasks in various scenarios.Finally,the Smoothed Intersection over Union(SIoU)loss function replaces the Complete Intersection over Union(CIoU)loss function in the original model,resulting in more accurate prediction of bounding boxes and continuous model optimization.Experimental results on the High-Resolution Remote Sensing Detection(HRRSD)dataset demonstrate that the proposed DI-YOLO model outperforms mainstream target detection algorithms in terms of mean Average Precision(mAP)for optical remote sensing image detection.Furthermore,it achieves Frames Per Second(FPS)of 138.9,meeting fast and accurate detection requirements.
基金National 1000 Young Talents Plan of ChinaNational Natural Science Foundation of China(61420106007,61671387,61871325)DECRA of Australica Resenrch Council (DE140100180).
文摘alient object detection aims at identifying the visually interesting object regions that are consistent with human perception. Multispectral remote sensing images provide rich radiometric information in revealing the physical properties of the observed objects, which leads to great potential to perform salient object detection for remote sensing images. Conventional salient object detection methods often employ handcrafted features to predict saliency by evaluating the pixel-wise or superpixel-wise contrast. With the recent use of deep learning framework, in particular, fully convolutional neural networks, there has been profound progress in visual saliency detection. However, this success has not been extended to multispectral remote sensing images, and existing multispectral salient object detection methods are still mainly based on handcrafted features, essentially due to the difficulties in image acquisition and labeling. In this paper, we propose a novel deep residual network based on a top-down model, which is trained in an end-to-end manner to tackle the above issues in multispectral salient object detection. Our model effectively exploits the saliency cues at different levels of the deep residual network. To overcome the limited availability of remote sensing images in training of our deep residual network, we also introduce a new spectral image reconstruction model that can generate multispectral images from RGB images. Our extensive experimental results using both multispectral and RGB salient object detection datasets demonstrate a significant performance improvement of more than 10% improvement compared with the state-of-the-art methods.
基金support by the National Natural Science Foundation of China (Grant No. 62005049)Natural Science Foundation of Fujian Province (Grant Nos. 2020J01451, 2022J05113)Education and Scientific Research Program for Young and Middleaged Teachers in Fujian Province (Grant No. JAT210035)。
文摘Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems, including spectral, polarization, and infrared technologies, there is still a lack of effective real-time method for accurately detecting small-size and high-efficient camouflaged people in complex real-world scenes. Here, this study proposes a snapshot multispectral image-based camouflaged detection model, multispectral YOLO(MS-YOLO), which utilizes the SPD-Conv and Sim AM modules to effectively represent targets and suppress background interference by exploiting the spatial-spectral target information. Besides, the study constructs the first real-shot multispectral camouflaged people dataset(MSCPD), which encompasses diverse scenes, target scales, and attitudes. To minimize information redundancy, MS-YOLO selects an optimal subset of 12 bands with strong feature representation and minimal inter-band correlation as input. Through experiments on the MSCPD, MS-YOLO achieves a mean Average Precision of 94.31% and real-time detection at 65 frames per second, which confirms the effectiveness and efficiency of our method in detecting camouflaged people in various typical desert and forest scenes. Our approach offers valuable support to improve the perception capabilities of unmanned aerial vehicles in detecting enemy forces and rescuing personnel in battlefield.
基金supported by the National Natural Science Foundation of China(Grant No.91948303)。
文摘Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.
基金supported by Yulin Science and Technology Association Youth Talent Promotion Program(Grant No.20200212).
文摘The Earth observation remote sensing images can display ground activities and status intuitively,which plays an important role in civil and military fields.However,the information obtained from the research only from the perspective of images is limited,so in this paper we conduct research from the perspective of video.At present,the main problems faced when using a computer to identify remote sensing images are:They are difficult to build a fixed regular model of the target due to their weak moving regularity.Additionally,the number of pixels occupied by the target is not enough for accurate detection.However,the number of moving targets is large at the same time.In this case,the main targets cannot be recognized completely.This paper studies from the perspective of Gestalt vision,transforms the problem ofmoving target detection into the problem of salient region probability,and forms a Saliency map algorithm to extract moving targets.On this basis,a convolutional neural network with global information is constructed to identify and label the target.And the experimental results show that the algorithm can extract moving targets and realize moving target recognition under many complex conditions such as target’s long-term stay and small-amplitude movement.
基金supported by the National Natural Science Foundation of China(U1435220)
文摘How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.
基金funded by Thuyloi University Foundation for Science and Technologyunder Grant Number TLU.STF.19-02.
文摘In image processing, one of the most important steps is image segmentation. The objects in remote sensing images often have to be detected in order toperform next steps in image processing. Remote sensing images usually havelarge size and various spatial resolutions. Thus, detecting objects in remote sensing images is very complicated. In this paper, we develop a model to detectobjects in remote sensing images based on the combination of picture fuzzy clustering and MapReduce method (denoted as MPFC). Firstly, picture fuzzy clustering is applied to segment the input images. Then, MapReduce is used to reducethe runtime with the guarantee of quality. To convert data for MapReduce processing, two new procedures are introduced, including Map_PFC and Reduce_PFC.The formal representation and details of two these procedures are presented in thispaper. The experiments on satellite image and remote sensing image datasets aregiven to evaluate proposed model. Validity indices and time consuming are usedto compare proposed model to picture fuzzy clustering model. The values ofvalidity indices show that picture fuzzy clustering integrated to MapReduce getsbetter quality of segmentation than using picture fuzzy clustering only. Moreover,on two selected image datasets, the run time of MPFC model is much less thanthat of picture fuzzy clustering.
文摘This paper introduces some of the image processing techniques developed in the Canada Research Chair in Advanced Geomatics Image Processing Laboratory (CRC-AGIP Lab) and in the Department of Geodesy and Geomatics Engineering (GGE) at the University of New Brunswick (UNB), Canada. The techniques were developed by innovatively/“smartly” utilizing the characteristics of the available very high resolution optical remote sensing images to solve important problems or create new applications in photogrammetry and remote sensing. The techniques to be introduced are: automated image fusion (UNB-PanSharp), satellite image online mapping, street view technology, moving vehicle detection using single set satellite imagery, supervised image segmentation, image matching in smooth areas, and change detection using images from different viewing angles. Because of their broad application potential, some of the techniques have made a global impact, and some have demonstrated the potential for a global impact.
文摘Shadow detection is a crucial task in high-resolution remote-sensing image processing. Various shadow detection methods have been explored during the last decades. These methods did improve the detection accuracy but are still not robust enough to get satisfactory results for failing to extract enough information from the original images. To take full advantage of various features of shadows, a new method combining edges information with the spectral and spatial information is proposed in this paper. As known, edge is one of the most important characteristics in the high-resolution remote-sensing images. Unfortunately, in shadow detection, it is a high-risk strategy to determine whether a pixel is the edge or not strictly because intensity values on shadow boundaries are always between those in shadow and non-shadow areas. Therefore, a soft edge description model is developed to describe the degree of each pixel belonging to the edges or not. Sequentially, the soft edge description is incorporating to a fuzzy clustering procedure based on HMRF (Hidden Markov Random Fields), in which more appropriate spatial contextual information can be used. More concretely, it consists of two components: the soft edge description model and an iterative shadow detection algorithm. Experiments on several remote sensing images have shown that the proposed method can obtain more accurate shadow detection results.
文摘As being an effective real-time method of monitoring vehicle emissions on-road, a remote sensing system based on the tunable diode laser (TDL) technology was presented, and the key technologies were discussed. A field test in Guangzhou(Guangdong, China) was performed and was found that the factors, such as slope, instantaneous speed and acceleration, had significant influence on the detectable rate of the system. Based on the results, the proposal choice of testing site was presented.
基金National Natural Science Foundation of China(No.61761027)Postgraduate Education Reform Project of Lanzhou Jiaotong University(No.1600120101)
文摘There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge detection method for remote sensing image based on variable structuring element is proposed. Firstly, the structuring elements with different scales and multiple directions are constructed according to the diversity of remote sensing imagery targets. In order to suppress the noise of the target background and highlight the edge of the image target in the remote sensing image by adaptive Top hat and Bottom hat transform, the corresponding adaptive morphological operations are constructed based on variable structuring elements; Secondly, adaptive morphological edge detection is used to obtain multiple images with different scales and directional edge features; Finally, the image edges are obtained by weighted summation of each direction edge, and then the least square is used to fit the edges for accurate location of the edge contour of the target. The experimental results show that the proposed method not only can detect the complete edge of remote sensing image, but also has high edge detection accuracy and superior anti-noise performance. Compared with classical edge detection and the morphological edge detection with a fixed single structuring element, the proposed method performs better in edge detection effect, and the accuracy of detection can reach 95 %
文摘In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes.
基金Project(201412016)supported by the Special Fund for Public Projects of National Administration of Surveying,Mapping and Geoinformation of ChinaProject(51174287)supported by the National Natural Science Foundation of China
文摘Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in the Majiliang mining area.The thermal field distributions of this area in 2000,2002,2006,2007,and 2009 were obtained using Landsat TM/ETM.The changes in the distribution were then analyzed to approximate the locations of the coal fires.Through UAV imagery employed at a very high resolution(0.2 m),the texture information,linear features,and brightness of the ground fissures in the coal fire area were determined.All these data were combined to build a knowledge model of determining fissures and were used to support underground coal fire detection.An infrared thermal imager was used to map the thermal field distribution of areas where coal fire is serious.Results were analyzed to identify the hot spot trend and the depth of the burning point.
基金Supported by the National Natural Science Foundation of China (72174172, 71774134)the Fundamental Research Funds for Central University,Southwest Minzu University (2022NYXXS094)。
文摘Remote sensing image object detection is one of the core tasks of remote sensing image processing.In recent years,with the development of deep learning,great progress has been made in object detection in remote sensing.However,the problems of dense small targets,complex backgrounds and poor target positioning accuracy in remote sensing images make the detection of remote sensing targets still difficult.In order to solve these problems,this research proposes a remote sensing image object detection algorithm based on improved YOLOX-S.Firstly,the Efficient Channel Attention(ECA)module is introduced to improve the network's ability to extract features in the image and suppress useless information such as background;Secondly,the loss function is optimized to improve the regression accuracy of the target bounding box.We evaluate the effectiveness of our algorithm on the NWPU VHR-10 remote sensing image dataset,the experimental results show that the detection accuracy of the algorithm can reach 95.5%,without increasing the amount of parameters.It is significantly improved compared with that of the original YOLOX-S network,and the detection performance is much better than that of some other mainstream remote sensing image detection methods.Besides,our method also shows good generalization detection performance in experiments on aircraft images in the RSOD dataset.
基金supported by the Natural Science Foundation of China(No.61906213).
文摘Most of the current object detection algorithms use pretrained models that are trained on ImageNet and then fine-tuned in the network,which can achieve good performance in terms of general object detectors.However,in the field of remote sensing image object detection,as pretrained models are significantly different from remote sensing data,it is meaningful to explore a train-fromscratch technique for remote sensing images.This paper proposes an object detection framework trained from scratch,SRS-Net,and describes the design of a densely connected backbone network to provide integrated hidden layer supervision for the convolution module.Then,two necessary improvement principles are proposed:studying the role of normalization in the network structure,and improving data augmentation methods for remote sensing images.To evaluate the proposed framework,we performed many ablation experiments on the DIOR,DOTA,and AS datasets.The results show that whether using the improved backbone network,the normalization method or training data enhancement strategy,the performance of the object detection network trained from scratch increased.These principles compensate for the lack of pretrained models.Furthermore,we found that SRS-Net could achieve similar to or slightly better performance than baseline methods,and surpassed most advanced general detectors.
文摘The following article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published papers. The scientific community takes a very strong view on this matter, and the Journal of Geographic Information System treats all unethical behavior such as plagiarism seriously. This paper published in Vol.4 No.3 273-278, 2012, has been removed from this site.
基金funded by the Innovative Research Program of the International Research Center of Big Data for Sustainable Development Goals(Grant No.CBAS2022IRP04)the Sichuan Natural Resources Department Project(Grant NO.510201202076888)+3 种基金the Project of the Geological Exploration Management Department of the Ministry of Natural Resources(Grant NO.073320180876/2)the Key Research and Development Program of Guangxi(Guike-AB22035060)the National Natural Science Foundation of China(Grant No.42171291)the Chengdu University of Technology Postgraduate Innovative Cultivation Program:Tunnel Geothermal Disaster Susceptibility Evaluation in Sichuan-Tibet Railway Based on Deep Learning(CDUT2022BJCX015).
文摘Remote sensing and deep learning are being widely combined in tasks such as urban planning and disaster prevention.However,due to interference occasioned by density,overlap,and coverage,the tiny object detection in remote sensing images has always been a difficult problem.Therefore,we propose a novel TO–YOLOX(Tiny Object–You Only Look Once)model.TO–YOLOX possesses a MiSo(Multiple-in-Singleout)feature fusion structure,which exhibits a spatial-shift structure,and the model balances positive and negative samples and enhances the information interaction pertaining to the local patch of remote sensing images.TO–YOLOX utilizes an adaptive IOU-T(Intersection Over Uni-Tiny)loss to enhance the localization accuracy of tiny objects,and it applies attention mechanism Group-CBAM(group-convolutional block attention module)to enhance the perception of tiny objects in remote sensing images.To verify the effectiveness and efficiency of TO–YOLOX,we utilized three aerial-photography tiny object detection datasets,namely VisDrone2021,Tiny Person,and DOTA–HBB,and the following mean average precision(mAP)values were recorded,respectively:45.31%(+10.03%),28.9%(+9.36%),and 63.02%(+9.62%).With respect to recognizing tiny objects,TO–YOLOX exhibits a stronger ability compared with Faster R-CNN,RetinaNet,YOLOv5,YOLOv6,YOLOv7,and YOLOX,and the proposed model exhibits fast computation.