This work investigates the relationship between intellectual capital and value creation in the sector of production and assembly of vehicles and auto-parts in Brazil. Through the access of the database from the annual...This work investigates the relationship between intellectual capital and value creation in the sector of production and assembly of vehicles and auto-parts in Brazil. Through the access of the database from the annual industrial research conducted by the Brazilian Institute of Geography and Statistics, we gathered 865 observations, from 2000 to 2006, of public and private Brazilian companies with more than 100 employees. The database allows the estimate of relevant aggregated variables such as national accounts, gross domestic product, intermediate consumption, as well as propitiates a sectorial study of business strategies and performance, including value added by individual companies. In particular, in this study we use data on variables associated to intellectual capital. To achieve the goal of the study, we consider intellectual capital as defined by Pulic (2000, 2002), including human capital and structural capital. For the analysis of business performance, we used Pulic's VAIC (Value Added Intellectual Cofficient) index as a measure of efficiency of the employed financial and intellectual capital. Regression models were run to verify the relationship among the efficiency in the use of intellectual capital and the profitability of Brazilian companies. The gross income, calculated as before selling, general and administrative expenses, depreciation expenses, amortization and interest expenses, was used as measure of the flows of value creation and the profitability was measured by the gross income to the total assets of the companies. Considering the constructs defined by Pulic (2000, 2002), we tested, for the Brazilian sector of Production and Assembly of Vehicles and Auto-parts, the following hypotheses: (l) there is a positive relationship between value creation and intellectual capital, (2) there is a positive relationship between value creation and stock of intellectual capital, (3) there is a positive relationship between value creation and efficiency of the employed capital, (4) there is a positive relationship between value creation and efficiency of the human capital, (5) there is a positive relationship between value creation and efficiency of the structural capital. The results of the study, obtained through panel data analysis and through the use static and dynamic models, support the hypotheses that the intellectual capital of the companies, in its flow and stock dimensions, is positively and significantly related to value creation.展开更多
The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term ...The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term strategy, there are two ways to reduce the amount of CO2 emissions in the transportation sector. The first way is characterized by creating more efficient vehicles. In contrast, the second way is characterized by changing the fuel used. The current study addressed the second way, changing the fuel type. The study examined the potential of battery electric vehicles (BEVs) as an alternative fuel type to reduce CO2 emissions in Hungarys transportation sector. The study used secondary data retrieved from Statista and stata.com to analyze the future trends of BEVs in Hungary. The results showed that the percentage of BEVs in Hungary in 2022 was 0.4% compared to the total number of registered passenger cars, which is 3.8 million. The simple exponential smoothing (SES) time series forecast revealed that the number of BEVs is expected to reach 84,192 in 2030, indicating a percentage increase of 2.21% in the next eight years. The study suggests that increasing the number of BEVs is necessary to address the negative impact of CO2 emissions on society. The Hungarian Ministry of Innovation and Technologys strategy to reduce the cost of BEVs may increase the percentage of BEVs by 10%, resulting in a potential average reduction of 76,957,600 g/km of CO2 compared to gasoline, diesel, hybrid electric vehicles (HEVs), and plug-in hybrid vehicles (PHEVs).展开更多
With almost 23% of the industry's GDP (gross domestic public), the Brazilian automobile industry confirms, once more, to be one of the most important sectors for national economy in the past years. Due to this rele...With almost 23% of the industry's GDP (gross domestic public), the Brazilian automobile industry confirms, once more, to be one of the most important sectors for national economy in the past years. Due to this relevance, in October 2012, the Brazilian government has approved by decree a program of incentive to innovation and intensification of the local productive chain in the automotive industry called "Inovar-Auto". The new Brazilian automotive policy aims by encouraging R & D (research and development) to raise the technological level of vehicles manufactured in country. Undoubtedly, those initiatives contribute hugely for inserting the country on worldwide route of technological development encouraging the local production of safer vehicles and better technological contents. The search for this standard of vehicles has been a subject of several studies in the automotive world and in recent years it has gained importance, including being one of the Inovar-Auto challenges. In this context, this paper aims to present, through a theoretical research, key technologies and vehicle security initiatives developed so far in worldwide and to point out the challenges for development in the national market.展开更多
Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical cha...Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.展开更多
Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles...Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles,the current mature application of traditional vehicle state estimation algorithms can not meet the requirements of drive-by-wire chassis vehicle state estimation.This paper proposes a state estimation method for drive-by-wire chassis vehicle based on the dual unscented particle filter algorithm,which make full use of the known advantages of the four-wheel drive torque and steer angle parameters of the drive-by-wire chassis vehicle.In the dual unscented particle filter algorithm,two unscented particle filter transfer information to each other,observe the vehicle state information and the tire force parameter information of the four wheels respectively,which reduce the influence of parameter uncertainty and model parameter changes on the estimation accuracy during driving.The performance with the dual unscented particle filter algorithm,which is analyzed in terms of the time-average square error,is superior of the unscented Kalman filter algorithm.The effectiveness of the algorithm is further verified by driving simulator test.In this paper,a vehicle state estimator based on dual unscented particle filter algorithm was proposed for the first time to improve the estimation accuracy of vehicle parameters and states.展开更多
This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and ...This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and anti-lock braking system(ABS).First,a longitudinal-vertical coupled vehicle dynamics model is established by integrating a road input model.Then the coupling mechanisms between longitudinal and vertical vehicle dynamics are analyzed.An ASS-ABS integrated control system is proposed,utilizing an H∞controller for ASS to optimize load transfer effect and a neural network sliding mode control for ABS implementation.Finally,the effectiveness of the proposed control scheme is evaluated through comprehensive tests conducted on a hardware-in-loop(HIL)test platform.The HIL test results demonstrate that the proposed control scheme can significantly improve the braking performance and ride comfort compared to conventional ABS control methods.展开更多
The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although ...The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.展开更多
Pneumatic tire modeling and validation have been the topic of several research papers, however, most of these papers only deal with pneumatic passenger and truck tires. In recent years, wheeled-scaled vehicles have ga...Pneumatic tire modeling and validation have been the topic of several research papers, however, most of these papers only deal with pneumatic passenger and truck tires. In recent years, wheeled-scaled vehicles have gained lots of attention as a feasible testing platform, nonetheless up to the authors’ knowledge there has been no research regarding the use of scaled tires and their effect on the overall vehicle performance characteristics. This paper presents a novel scaled electric combat vehicle tire model and validation technique. The pro-line lockdown tire size 3.00 × 7.35 is modeled using the Finite Element Analysis (FEA) technique and several materials including layered membrane, beam elements, and Mooney-Rivlin for rubber. The tire-rim assembly is then described, and the rigid body analysis is presented. The tire is then validated using an in-house custom-made static tire testing machine. The tire test rig is made specifically to test the pro-line tire model and is designed and manufactured in the laboratory. The tire is validated using vertical stiffness and footprint tests in the static domain at different operating conditions including several vertical loads. Then the tire is used to perform rolling resistance and steering analysis including the rolling resistance coefficient and the cornering stiffness. The analysis is performed at different operating conditions including longitudinal speeds of 5, 10, and 15 km/h. This tire model will be further used to determine the tractive and braking performance of the tire. Furthermore, the tire test rig will also be modified to perform cornering stiffness tests.展开更多
Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NV...Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NVH targets based on the specific needs of different project teams during the initial project stages.This approach innovatively integrates dynamic optimization,Radial Basis Function(RBF),and Fuzzy Design Variables Genetic Algorithm(FDVGA) into the optimization process of Statistical Energy Analysis(SEA),and also takes vehicle sheet metal into account in the optimization of sound packages.In the implementation process,a correlation model is established through Python scripts to link material density with acoustic parameters,weight,and cost.By combining Optimus and VaOne software,an optimization design workflow is constructed and the optimization design process is successfully executed.Under various constraints related to acoustic performance,weight and cost,a globally optimal design is achieved.This technology has been effectively applied in the field of Battery Electric Vehicle(BEV).展开更多
Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada...Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.展开更多
The application of artificial intelligence technology in Internet of Vehicles(lov)has attracted great research interests with the goal of enabling smart transportation and traffic management.Meanwhile,concerns have be...The application of artificial intelligence technology in Internet of Vehicles(lov)has attracted great research interests with the goal of enabling smart transportation and traffic management.Meanwhile,concerns have been raised over the security and privacy of the tons of traffic and vehicle data.In this regard,Federated Learning(FL)with privacy protection features is considered a highly promising solution.However,in the FL process,the server side may take advantage of its dominant role in model aggregation to steal sensitive information of users,while the client side may also upload malicious data to compromise the training of the global model.Most existing privacy-preserving FL schemes in IoV fail to deal with threats from both of these two sides at the same time.In this paper,we propose a Blockchain based Privacy-preserving Federated Learning scheme named BPFL,which uses blockchain as the underlying distributed framework of FL.We improve the Multi-Krum technology and combine it with the homomorphic encryption to achieve ciphertext-level model aggregation and model filtering,which can enable the verifiability of the local models while achieving privacy-preservation.Additionally,we develop a reputation-based incentive mechanism to encourage users in IoV to actively participate in the federated learning and to practice honesty.The security analysis and performance evaluations are conducted to show that the proposed scheme can meet the security requirements and improve the performance of the FL model.展开更多
There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction...There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction temperature estimation approach based on neural network without additional cost is proposed and the lifetime calculation for IGBT using electric vehicle big data is performed.The direct current(DC)voltage,operation current,switching frequency,negative thermal coefficient thermistor(NTC)temperature and IGBT lifetime are inputs.And the junction temperature(T_(j))is output.With the rain flow counting method,the classified irregular temperatures are brought into the life model for the failure cycles.The fatigue accumulation method is then used to calculate the IGBT lifetime.To solve the limited computational and storage resources of electric vehicle controllers,the operation of IGBT lifetime calculation is running on a big data platform.The lifetime is then transmitted wirelessly to electric vehicles as input for neural network.Thus the junction temperature of IGBT under long-term operating conditions can be accurately estimated.A test platform of the motor controller combined with the vehicle big data server is built for the IGBT accelerated aging test.Subsequently,the IGBT lifetime predictions are derived from the junction temperature estimation by the neural network method and the thermal network method.The experiment shows that the lifetime prediction based on a neural network with big data demonstrates a higher accuracy than that of the thermal network,which improves the reliability evaluation of system.展开更多
Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issu...Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.展开更多
Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead...Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead and data privacy risks.The recently proposed Swarm Learning(SL)provides a decentralized machine learning approach for unit edge computing and blockchain-based coordination.A Swarm-Federated Deep Learning framework in the IoV system(IoV-SFDL)that integrates SL into the FDL framework is proposed in this paper.The IoV-SFDL organizes vehicles to generate local SL models with adjacent vehicles based on the blockchain empowered SL,then aggregates the global FDL model among different SL groups with a credibility weights prediction algorithm.Extensive experimental results show that compared with the baseline frameworks,the proposed IoV-SFDL framework reduces the overhead of client-to-server communication by 16.72%,while the model performance improves by about 5.02%for the same training iterations.展开更多
The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods ...The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance.展开更多
This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control fram...This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.展开更多
High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency...High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV.展开更多
This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles in...This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.展开更多
Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These...Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources.展开更多
Coccidiosis is a disease caused by intracellular protozoan parasites, specifically belonging to the genus Eimeria. These parasites target the gastrointestinal tract in different types of hosts, causing sores in the in...Coccidiosis is a disease caused by intracellular protozoan parasites, specifically belonging to the genus Eimeria. These parasites target the gastrointestinal tract in different types of hosts, causing sores in the intestinal lining. The presence of these lesions reduces the animal’s ability to digest and absorb nutrients, significantly impacting their overall performance. The current study aimed to explore the potential correlation between seasonal variations and the incidence of Eimeria spp-induced lesions in broiler chickens’ gastrointestinal tracts in Brazil from 2012 to 2018. A total of 8,607 broiler chickens, aged 14 to 42 days, were sampled from 103 poultry integrated companies in Brazil to conduct intestinal health examinations. The sampling process involved selecting 3 to 6 chickens from each poultry house for examination. The assessment included various abnormalities such as shedding of intestinal cells and excessive fluid and mucus presence, thickening and tension of the intestines, food movement, roughened mucosal surface resembling a Turkish towel in the small intestine, tissue death, duodenal inflammation, intestinal inflammation, gizzard erosion, presence of worms and bedding material, and ingestion of mealworms. During the seasons, winter exhibited the highest average occurrence of Eimeria maxima microorganisms at 52.83%, with E. acervulina following closely at 26.42% in second place. In spring, E. maxima had an occurrence of 11.31%, while in fall, E. tenella had the lowest occurrence at 6.74%. When analyzing the seasonal occurrence of Eimeria, it was observed that E. maxima micro was more common during winter compared to summer (P = 0.0491). However, no discernible variation was observed in the occurrence of the remaining species across different seasons. Research findings suggest that subclinical coccidiosis is most prevalent during the winter season in Brazil. Likewise, clinical disease caused by E. acervulina is also prevalent during this time. In contrast, E. maxima is more likely to cause clinical disease in the spring, whereas E. tenella is more commonly associated with clinical disease in the fall. Lesions induced by Eimeria spp. are associated with factors influencing the overall health of broiler intestines. These findings allow for the utilization of seasonal metrics in disease management, thereby reducing economic losses associated with the condition.展开更多
文摘This work investigates the relationship between intellectual capital and value creation in the sector of production and assembly of vehicles and auto-parts in Brazil. Through the access of the database from the annual industrial research conducted by the Brazilian Institute of Geography and Statistics, we gathered 865 observations, from 2000 to 2006, of public and private Brazilian companies with more than 100 employees. The database allows the estimate of relevant aggregated variables such as national accounts, gross domestic product, intermediate consumption, as well as propitiates a sectorial study of business strategies and performance, including value added by individual companies. In particular, in this study we use data on variables associated to intellectual capital. To achieve the goal of the study, we consider intellectual capital as defined by Pulic (2000, 2002), including human capital and structural capital. For the analysis of business performance, we used Pulic's VAIC (Value Added Intellectual Cofficient) index as a measure of efficiency of the employed financial and intellectual capital. Regression models were run to verify the relationship among the efficiency in the use of intellectual capital and the profitability of Brazilian companies. The gross income, calculated as before selling, general and administrative expenses, depreciation expenses, amortization and interest expenses, was used as measure of the flows of value creation and the profitability was measured by the gross income to the total assets of the companies. Considering the constructs defined by Pulic (2000, 2002), we tested, for the Brazilian sector of Production and Assembly of Vehicles and Auto-parts, the following hypotheses: (l) there is a positive relationship between value creation and intellectual capital, (2) there is a positive relationship between value creation and stock of intellectual capital, (3) there is a positive relationship between value creation and efficiency of the employed capital, (4) there is a positive relationship between value creation and efficiency of the human capital, (5) there is a positive relationship between value creation and efficiency of the structural capital. The results of the study, obtained through panel data analysis and through the use static and dynamic models, support the hypotheses that the intellectual capital of the companies, in its flow and stock dimensions, is positively and significantly related to value creation.
文摘The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term strategy, there are two ways to reduce the amount of CO2 emissions in the transportation sector. The first way is characterized by creating more efficient vehicles. In contrast, the second way is characterized by changing the fuel used. The current study addressed the second way, changing the fuel type. The study examined the potential of battery electric vehicles (BEVs) as an alternative fuel type to reduce CO2 emissions in Hungarys transportation sector. The study used secondary data retrieved from Statista and stata.com to analyze the future trends of BEVs in Hungary. The results showed that the percentage of BEVs in Hungary in 2022 was 0.4% compared to the total number of registered passenger cars, which is 3.8 million. The simple exponential smoothing (SES) time series forecast revealed that the number of BEVs is expected to reach 84,192 in 2030, indicating a percentage increase of 2.21% in the next eight years. The study suggests that increasing the number of BEVs is necessary to address the negative impact of CO2 emissions on society. The Hungarian Ministry of Innovation and Technologys strategy to reduce the cost of BEVs may increase the percentage of BEVs by 10%, resulting in a potential average reduction of 76,957,600 g/km of CO2 compared to gasoline, diesel, hybrid electric vehicles (HEVs), and plug-in hybrid vehicles (PHEVs).
文摘With almost 23% of the industry's GDP (gross domestic public), the Brazilian automobile industry confirms, once more, to be one of the most important sectors for national economy in the past years. Due to this relevance, in October 2012, the Brazilian government has approved by decree a program of incentive to innovation and intensification of the local productive chain in the automotive industry called "Inovar-Auto". The new Brazilian automotive policy aims by encouraging R & D (research and development) to raise the technological level of vehicles manufactured in country. Undoubtedly, those initiatives contribute hugely for inserting the country on worldwide route of technological development encouraging the local production of safer vehicles and better technological contents. The search for this standard of vehicles has been a subject of several studies in the automotive world and in recent years it has gained importance, including being one of the Inovar-Auto challenges. In this context, this paper aims to present, through a theoretical research, key technologies and vehicle security initiatives developed so far in worldwide and to point out the challenges for development in the national market.
基金supported in part by the Australian Research Council Discovery Early Career Researcher Award(DE200101128)。
文摘Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.
基金Supported by National Key Research and Development Program of China(Grant No.2021YFB2500703)Science and Technology Department Program of Jilin Province of China(Grant No.20230101121JC).
文摘Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles,the current mature application of traditional vehicle state estimation algorithms can not meet the requirements of drive-by-wire chassis vehicle state estimation.This paper proposes a state estimation method for drive-by-wire chassis vehicle based on the dual unscented particle filter algorithm,which make full use of the known advantages of the four-wheel drive torque and steer angle parameters of the drive-by-wire chassis vehicle.In the dual unscented particle filter algorithm,two unscented particle filter transfer information to each other,observe the vehicle state information and the tire force parameter information of the four wheels respectively,which reduce the influence of parameter uncertainty and model parameter changes on the estimation accuracy during driving.The performance with the dual unscented particle filter algorithm,which is analyzed in terms of the time-average square error,is superior of the unscented Kalman filter algorithm.The effectiveness of the algorithm is further verified by driving simulator test.In this paper,a vehicle state estimator based on dual unscented particle filter algorithm was proposed for the first time to improve the estimation accuracy of vehicle parameters and states.
基金Supported by National Natural Science Foundation of China(Grant No.52272387)State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University of China(Grant No.KF2020-29)Beijing Municipal Science and Technology Commission through Beijing Nova Program of China(Grant No.20230484475).
文摘This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and anti-lock braking system(ABS).First,a longitudinal-vertical coupled vehicle dynamics model is established by integrating a road input model.Then the coupling mechanisms between longitudinal and vertical vehicle dynamics are analyzed.An ASS-ABS integrated control system is proposed,utilizing an H∞controller for ASS to optimize load transfer effect and a neural network sliding mode control for ABS implementation.Finally,the effectiveness of the proposed control scheme is evaluated through comprehensive tests conducted on a hardware-in-loop(HIL)test platform.The HIL test results demonstrate that the proposed control scheme can significantly improve the braking performance and ride comfort compared to conventional ABS control methods.
文摘The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.
文摘Pneumatic tire modeling and validation have been the topic of several research papers, however, most of these papers only deal with pneumatic passenger and truck tires. In recent years, wheeled-scaled vehicles have gained lots of attention as a feasible testing platform, nonetheless up to the authors’ knowledge there has been no research regarding the use of scaled tires and their effect on the overall vehicle performance characteristics. This paper presents a novel scaled electric combat vehicle tire model and validation technique. The pro-line lockdown tire size 3.00 × 7.35 is modeled using the Finite Element Analysis (FEA) technique and several materials including layered membrane, beam elements, and Mooney-Rivlin for rubber. The tire-rim assembly is then described, and the rigid body analysis is presented. The tire is then validated using an in-house custom-made static tire testing machine. The tire test rig is made specifically to test the pro-line tire model and is designed and manufactured in the laboratory. The tire is validated using vertical stiffness and footprint tests in the static domain at different operating conditions including several vertical loads. Then the tire is used to perform rolling resistance and steering analysis including the rolling resistance coefficient and the cornering stiffness. The analysis is performed at different operating conditions including longitudinal speeds of 5, 10, and 15 km/h. This tire model will be further used to determine the tractive and braking performance of the tire. Furthermore, the tire test rig will also be modified to perform cornering stiffness tests.
文摘Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NVH targets based on the specific needs of different project teams during the initial project stages.This approach innovatively integrates dynamic optimization,Radial Basis Function(RBF),and Fuzzy Design Variables Genetic Algorithm(FDVGA) into the optimization process of Statistical Energy Analysis(SEA),and also takes vehicle sheet metal into account in the optimization of sound packages.In the implementation process,a correlation model is established through Python scripts to link material density with acoustic parameters,weight,and cost.By combining Optimus and VaOne software,an optimization design workflow is constructed and the optimization design process is successfully executed.Under various constraints related to acoustic performance,weight and cost,a globally optimal design is achieved.This technology has been effectively applied in the field of Battery Electric Vehicle(BEV).
文摘Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.
基金supported by the National Natural Science Foundation of China under Grant 61972148.
文摘The application of artificial intelligence technology in Internet of Vehicles(lov)has attracted great research interests with the goal of enabling smart transportation and traffic management.Meanwhile,concerns have been raised over the security and privacy of the tons of traffic and vehicle data.In this regard,Federated Learning(FL)with privacy protection features is considered a highly promising solution.However,in the FL process,the server side may take advantage of its dominant role in model aggregation to steal sensitive information of users,while the client side may also upload malicious data to compromise the training of the global model.Most existing privacy-preserving FL schemes in IoV fail to deal with threats from both of these two sides at the same time.In this paper,we propose a Blockchain based Privacy-preserving Federated Learning scheme named BPFL,which uses blockchain as the underlying distributed framework of FL.We improve the Multi-Krum technology and combine it with the homomorphic encryption to achieve ciphertext-level model aggregation and model filtering,which can enable the verifiability of the local models while achieving privacy-preservation.Additionally,we develop a reputation-based incentive mechanism to encourage users in IoV to actively participate in the federated learning and to practice honesty.The security analysis and performance evaluations are conducted to show that the proposed scheme can meet the security requirements and improve the performance of the FL model.
文摘There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction temperature estimation approach based on neural network without additional cost is proposed and the lifetime calculation for IGBT using electric vehicle big data is performed.The direct current(DC)voltage,operation current,switching frequency,negative thermal coefficient thermistor(NTC)temperature and IGBT lifetime are inputs.And the junction temperature(T_(j))is output.With the rain flow counting method,the classified irregular temperatures are brought into the life model for the failure cycles.The fatigue accumulation method is then used to calculate the IGBT lifetime.To solve the limited computational and storage resources of electric vehicle controllers,the operation of IGBT lifetime calculation is running on a big data platform.The lifetime is then transmitted wirelessly to electric vehicles as input for neural network.Thus the junction temperature of IGBT under long-term operating conditions can be accurately estimated.A test platform of the motor controller combined with the vehicle big data server is built for the IGBT accelerated aging test.Subsequently,the IGBT lifetime predictions are derived from the junction temperature estimation by the neural network method and the thermal network method.The experiment shows that the lifetime prediction based on a neural network with big data demonstrates a higher accuracy than that of the thermal network,which improves the reliability evaluation of system.
基金supported in part by the National Natural Science Foundation of China (61973219,U21A2019,61873058)the Hainan Province Science and Technology Special Fund (ZDYF2022SHFZ105)。
文摘Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant 62071179.
文摘Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead and data privacy risks.The recently proposed Swarm Learning(SL)provides a decentralized machine learning approach for unit edge computing and blockchain-based coordination.A Swarm-Federated Deep Learning framework in the IoV system(IoV-SFDL)that integrates SL into the FDL framework is proposed in this paper.The IoV-SFDL organizes vehicles to generate local SL models with adjacent vehicles based on the blockchain empowered SL,then aggregates the global FDL model among different SL groups with a credibility weights prediction algorithm.Extensive experimental results show that compared with the baseline frameworks,the proposed IoV-SFDL framework reduces the overhead of client-to-server communication by 16.72%,while the model performance improves by about 5.02%for the same training iterations.
基金This work was supported by the National Nature Science Foundation of China(Grant Nos.42177139 and 41941017)the Natural Science Foundation Project of Jilin Province,China(Grant No.20230101088JC).The authors would like to thank the anonymous reviewers for their comments and suggestions.
文摘The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance.
基金the financial support from the Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.
基金supported in part by the National Natural Science Foundation of China(62371116 and 62231020)in part by the Science and Technology Project of Hebei Province Education Department(ZD2022164)+2 种基金in part by the Fundamental Research Funds for the Central Universities(N2223031)in part by the Open Research Project of Xidian University(ISN24-08)Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(Guilin University of Electronic Technology,China,CRKL210203)。
文摘High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV.
基金the National Natural Science Foundation of China(51939001,52171292,51979020,61976033)Dalian Outstanding Young Talents Program(2022RJ05)+1 种基金the Topnotch Young Talents Program of China(36261402)the Liaoning Revitalization Talents Program(XLYC20-07188)。
文摘This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.
基金support of the National Natural Science Foundation of China(Grant Nos.U2240221 and 41977229)the Sichuan Youth Science and Technology Innovation Research Team Project(Grant No.2020JDTD0006).
文摘Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources.
文摘Coccidiosis is a disease caused by intracellular protozoan parasites, specifically belonging to the genus Eimeria. These parasites target the gastrointestinal tract in different types of hosts, causing sores in the intestinal lining. The presence of these lesions reduces the animal’s ability to digest and absorb nutrients, significantly impacting their overall performance. The current study aimed to explore the potential correlation between seasonal variations and the incidence of Eimeria spp-induced lesions in broiler chickens’ gastrointestinal tracts in Brazil from 2012 to 2018. A total of 8,607 broiler chickens, aged 14 to 42 days, were sampled from 103 poultry integrated companies in Brazil to conduct intestinal health examinations. The sampling process involved selecting 3 to 6 chickens from each poultry house for examination. The assessment included various abnormalities such as shedding of intestinal cells and excessive fluid and mucus presence, thickening and tension of the intestines, food movement, roughened mucosal surface resembling a Turkish towel in the small intestine, tissue death, duodenal inflammation, intestinal inflammation, gizzard erosion, presence of worms and bedding material, and ingestion of mealworms. During the seasons, winter exhibited the highest average occurrence of Eimeria maxima microorganisms at 52.83%, with E. acervulina following closely at 26.42% in second place. In spring, E. maxima had an occurrence of 11.31%, while in fall, E. tenella had the lowest occurrence at 6.74%. When analyzing the seasonal occurrence of Eimeria, it was observed that E. maxima micro was more common during winter compared to summer (P = 0.0491). However, no discernible variation was observed in the occurrence of the remaining species across different seasons. Research findings suggest that subclinical coccidiosis is most prevalent during the winter season in Brazil. Likewise, clinical disease caused by E. acervulina is also prevalent during this time. In contrast, E. maxima is more likely to cause clinical disease in the spring, whereas E. tenella is more commonly associated with clinical disease in the fall. Lesions induced by Eimeria spp. are associated with factors influencing the overall health of broiler intestines. These findings allow for the utilization of seasonal metrics in disease management, thereby reducing economic losses associated with the condition.