期刊文献+
共找到781篇文章
< 1 2 40 >
每页显示 20 50 100
Multi-Body Dynamics Modeling of Heavy Goods Vehicle-Rail Interaction
1
作者 Lili Liu Jianhua Liu Jihong Zuo 《Open Journal of Applied Sciences》 2024年第7期1715-1722,共8页
Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonablenes... Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling. 展开更多
关键词 vehicle-Rail Coupling dynamic Modeling Wheel-Rail interaction Forces
下载PDF
An Analysis of the Dynamic Behavior of Damaged Reinforced Concrete Bridges under Moving Vehicle Loads by Using the Moving Mesh Technique
2
作者 Fabrizio Greco Paolo Lonetti +1 位作者 Arturo Pascuzzo Giulia Sansone 《Structural Durability & Health Monitoring》 EI 2023年第6期457-483,共27页
This work proposes a numerical investigation on the effects of damage on the structural response of Reinforced Concrete(RC)bridge structures commonly adopted in highway and railway networks.An effective three-dimensio... This work proposes a numerical investigation on the effects of damage on the structural response of Reinforced Concrete(RC)bridge structures commonly adopted in highway and railway networks.An effective three-dimensional FE-based numerical model is developed to analyze the bridge’s structural response under several damage scenarios,including the effects of moving vehicle loads.In particular,the longitudinal and transversal beams are modeled through solid finite elements,while horizontal slabs are made of shell elements.Damage phenomena are also incorporated in the numerical model according to a smeared approach consistent with Continuum Damage Mechanics(CDM).In such a context,the proposed method utilizes an advanced and efficient computational strategy for reproducing Vehicle-Bridge Interaction(VBI)effects based on a moving mesh technique consistent with the Arbitrary Lagrangian-Eulerian(ALE)formulation.The proposed model adopts a moving mesh interface for tracing the positions of the contact points between the vehicle’s wheels and the bridge slabs.Such modeling strategy avoids using extremely refined discretization for structural members,thus drastically reducing computational efforts.Vibrational analyses in terms of damage scenarios are presented to verify how the presence of damage affects the natural frequencies of the structural system.In addition,a comprehensive investigation regarding the response of the bridge under moving vehicles is developed,also providing results in terms of Dynamic Amplification Factor(DAFs)for typical design bridge variables. 展开更多
关键词 bridge structures moving mesh technique vehicle-bridge interaction dynamics damage mechanics dynamic amplification factors
下载PDF
Vehicle-Bridge Interaction Simulation and Damage Identification of a Bridge Using Responses Measured in a Passing Vehicle by Empirical Mode Decomposition Method
3
作者 Shohel Rana Md. Rifat Zaman +2 位作者 Md. Ibrahim Islam Ifty Seyedali Mirmotalebi Tahsin Tareque 《Open Journal of Civil Engineering》 2023年第4期742-755,共14页
To prevent early bridge failures, effective Structural Health Monitoring (SHM) is vital. Vibration-based damage assessment is a powerful tool in this regard, as it relies on changes in a structure’s dynamic character... To prevent early bridge failures, effective Structural Health Monitoring (SHM) is vital. Vibration-based damage assessment is a powerful tool in this regard, as it relies on changes in a structure’s dynamic characteristics as it degrades. By measuring the vibration response of a bridge due to passing vehicles, this approach can identify potential structural damage. This dissertation introduces a novel technique grounded in Vehicle-Bridge Interaction (VBI) to evaluate bridge health. It aims to detect damage by analyzing the response of passing vehicles, taking into account VBI. The theoretical foundation of this method begins with representing the bridge’s superstructure using a Finite Element Model and employing a half-car dynamic model to simulate the vehicle with suspension. Two sets of motion equations, one for the bridge and one for the vehicle are generated using the Finite Element Method, mode superposition, and D’Alembert’s principle. The combined dynamics are solved using the Newmark-beta method, accounting for road surface roughness. A new approach for damage identification based on the response of passing vehicles is proposed. The response is theoretically composed of vehicle frequency, bridge natural frequency, and a pseudo-frequency component related to vehicle speed. The Empirical Mode Decomposition (EMD) method is applied to decompose the signal into its constituent parts, and damage detection relies on the Intrinsic Mode Functions (IMFs) corresponding to the vehicle speed component. This technique effectively identifies various damage scenarios considered in the study. 展开更多
关键词 Structural Health Monitoring Vibration-Based Damage Identification vehicle-bridge interaction Finite Element Model Empirical Mode Decomposition
下载PDF
Test and numerical investigations on static and dynamic characteristics of extra-wide concrete self-anchored suspension bridge under vehicle loads 被引量:8
4
作者 ZHOU Guang-pan LI Ai-qun +1 位作者 LI Jian-hui DUAN Mao-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2382-2395,共14页
The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite... The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite element simulations, the static deformations of different components, stress increments and distributions of the girder, as well as the vibration characteristics and damping ratio of the Hunan Road Bridge were analyzed, which is the widest self-anchored suspension bridge in China at present. The dynamic responses were calculated using the Newmark-β integration method assisted by the simulation models of bridge and vehicles, the influences on the dynamic impact coefficient(DIC) brought by the vehicle parameters, girder width, eccentricity travel and deck flatness were also researched. The spatial effect of the girder is obvious due to the extra width, which performs as the stress increments distribute unevenly along the transverse direction, and the girder deflections and stress increments of the upper plate change as a "V" and "M" shape respectively under the symmetrical vehicle loads affected by the shear lag effect, cross slope and local effect of the wheels, the maximum of stress increments are located in the junctions with the inner webs. The obvious girder torsional deformation and the apparent unevenness of the hanger forces between the two cable planes under the eccentric vehicle loads, together with the mode shapes such as the girder transverse bending and torsion which appear relatively earlier, all reflect the weakened torsional rigidity of the extra-wide girder. The transverse displacements of towers are more obvious than the longitudinal ones. As for the influences on the DIC, the static effect of the heavier vehicles plays a major role when pass through with a higher speed and the changes of vehicle suspension stiffness generate greater impacts than the suspension damp. The values of DIC in the vehicle-running side during the eccentric travel, affected by the restricts from the static effects of the eccentric moving trucks, are significantly smaller than the vehicle-free side, the increase in the road roughness is the most sensitive one among the above influential factors. The results could provide references for the design, static and dynamic response analysis of the similar extra-wide suspension bridges. 展开更多
关键词 self-anchored suspension bridge extra-wide girder field test simulation vehicle loads increments distribution damping ratio mode shape dynamic impact coefficient
下载PDF
Numerical analysis of dynamic response of vehicle–bridge coupled system on long-span continuous girder bridge 被引量:4
5
作者 Lipeng An Dejian Li +1 位作者 Peng Yu Peng Yuan 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第4期186-194,共9页
To systematically study the vehicle-bridge coupled dynamic response and its change rule with different parameters, a vehicle model with seven degrees of freedom was built and the total potential energy of vehicle spac... To systematically study the vehicle-bridge coupled dynamic response and its change rule with different parameters, a vehicle model with seven degrees of freedom was built and the total potential energy of vehicle space vibration system was deduced. Considering the stimulation of road roughness, the dynamic response equation of vehicle-bridge coupled system was established in accordance with the elastic system principle of total potential energy with stationary value and the "set-in-right-position" rule. On the basis of the self-compiled Fortran program and bridge engineering, the dynamic response of long- span continuous girder bridge under vehicle load was studied. This study also included the calculation of vehicle impact coefficient, evaluation of vibration comfort, and analysis of dynamic response parameters. Results show the impact coefficient changes with lane number and is larger than the value calculated by the "general code for design of highway bridges and culverts (China)". The Dieckmann index of bridge vibration is also related to lane number, and the vibration comfort evaluation is good in normal conditions. The relevant conclusions from parametric analyses have practical significance to dynamic design and daily operation of long-span continuous girder bridges in expressways. Safety and comfort are expected to improve significantly with further control of the vibration of vehicle-bridge system. 展开更多
关键词 Long-span continuous bridge vehicle-bridge coupled system dynamic responsevehicle impact coefficient Vibration comfort
下载PDF
Dynamic interactions of an integrated vehicle–electromagnetic energy harvester–tire system subject to uneven road excitations
6
作者 Jing Tang Xing Zhe Sun +1 位作者 Sulian Zhou Mingyi Tan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第2期440-456,共17页
An investigation is undertaken of an integrated mechanical-electromagnetic coupling system consisting of a rigid vehicle with heave, roll, and pitch motions, four electromagnetic energy harvesters and four tires subje... An investigation is undertaken of an integrated mechanical-electromagnetic coupling system consisting of a rigid vehicle with heave, roll, and pitch motions, four electromagnetic energy harvesters and four tires subject to uneven road excitations in order to improve the passengers' riding comfort and harvest the lost engine energy due to uneven roads. Following the derived mathematical formulations and the proposed solution approaches, the numerical simulations of this interaction system subject to a continuous sinusoidal road excitation and a single ramp impact are completed. The simulation results are presented as the dynamic response curves in the forms of the frequency spectrum and the time history, which reveals the complex interaction characteristics of the system for vibration reductions and energy harvesting performance. It has addressed the coupling effects on the dynamic characteristics of the integrated system caused by: (1) the natural modes and frequencies of the vehicle; (2) the vehicle rolling and pitching motions; (3) different road excitations on four wheels; (4) the time delay of a road ramp to impact both the front and rear wheels, etc., which cannot be tackled by an often used quarter vehicle model. The guidelines for engineering applications are given. The developed coupling model and the revealed concept provide a means with analysis idea to investigate the details of four energy harvester motions for electromagnetic suspension designs in order to replace the current passive vehicle isolators and to harvest the lost engine energy. Potential further research directions are suggested for readers to consider in the future. 展开更多
关键词 Vibration-energy-harvesters Electromagnetic suspensions Mechanical electromagnetic interactions vehicle dynamics Vibration isolations
下载PDF
Dynamic Characteristics of Metro Vehicle under Thermal Deformation of Long-Span Cable-Stayed Bridge
7
作者 Quanming Long Qianhua Pu +2 位作者 Wenhao Zhou Li Zhu Zhaowei Chen 《World Journal of Engineering and Technology》 2022年第3期656-677,共22页
In order to study the influence of thermal deformation of long-span cable- stayed bridge (LSCSB) on the dynamic characteristics of metro vehicle on the bridge, based on the theory of vehicle-track coupled dynamic... In order to study the influence of thermal deformation of long-span cable- stayed bridge (LSCSB) on the dynamic characteristics of metro vehicle on the bridge, based on the theory of vehicle-track coupled dynamics, the rigid-flexible coupled dynamic model of metro vehicle-track-LSCSB system is established by using finite element method and multi-rigid-body dynamics. Adopting this model, the deformation of LSCSB subject to temperature is analyzed, then the comprehensive effect of track random irregularity and rail deformation caused by temperature load is considered to study the dynamic characteristics of metro vehicle running through the bridge, and finally the influences of temperature increment and running speed on concerned dynamic indices of vehicle are studied. The results show that the LSCSB deforms obviously subject to temperature load, and the overall performance is that the cooling is arched, and the heating is bent, and the shape variable changes almost linearly with the temperature load. According to the parameters studied in this paper, the rail deformation caused by temperature load increases the wheel-rail vertical force, derailment coefficient and wheel load reduction rate by 1.5%, 3.1% and 5% respectively. The vertical acceleration of the vehicle body decreases by 2.4% under the cooling condition, while increases by 3.7% under the heating condition. The dynamic response of the bridge changes under temperature load. The maximum vertical and horizontal displacement in the middle of the main beam span are 6.24 mm and 2.19 mm respectively, and the maximum vertical and horizontal acceleration are 1.29 cm/s<sup>2</sup> and 2.54cm/s<sup>2</sup> respectively. The derailment coefficient and vertical acceleration of vehicle body are more affected by temperature load, and the wheel load reduction rate and wheel-rail vertical force are more affected by speed. The conclusion of this paper provides a reference for subsequent scholars to study the influence of thermal deformation on the dynamic response of vehicles on LSCSB. 展开更多
关键词 vehicle Engineering vehicle Rail bridge Coupling Vibration LSCSB Temperature Load dynamic Characteristics
下载PDF
Evaluation of High-Speed Track Quality Using Dynamic Simulation of Vehicle-Track Interaction
8
作者 D. Liu, B. Lechner S. Freudenstein 《Journal of Transportation Technologies》 2016年第1期9-14,共6页
Track quality is a determinant factor for evaluating the overall performance of vehicle track interaction with respect to safety, ride quality and maintenance. Important parameters specifying the general quality of th... Track quality is a determinant factor for evaluating the overall performance of vehicle track interaction with respect to safety, ride quality and maintenance. Important parameters specifying the general quality of the track include track geometry (undamped) and track stiffness (damped), which can be evaluated by measurements taken along with track sections. A new co-simulation model based on Finite Element Method (FEM) and Multi Body Simulation (MBS) is built for the detailed description of track quality and its contribution to vehicle track interaction without simplifying the track structure as interconnected single elements. The simulation models and tools have been validated with the help of measured track geometry, track stiffness and dynamic wheel rail forces along the track sections of high speed lines. A comparative study between high speed lines using conventional ballasted track and ballastless track showed a significantly better quality in ballastless track sections. The dynamic forces which were determined by simulations and verified by measurements along the ballastless track section were comparatively less than the specified limits by German regulations for ballastless track design. Lower levels of dynamic forces can be utilized for optimization of track design and installation procedures with respect to lower initial costs. 展开更多
关键词 dynamic Wheel Load vehicle Track interaction FEM MBS Co-Simulation Ballastless Track Design
下载PDF
Smartphone-based bridge frequency identification using vehicle contact-point response
9
作者 Liu Chengyin Zhu Yipeng +1 位作者 Zeng Qing Wu Xiaodong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第4期1031-1043,共13页
Bridge frequency(BF)identification using the vehicle scanning method has attracted considerable attention during the last two decades.However,most previous studies have adopted unrealistic vehicle models,thus finding ... Bridge frequency(BF)identification using the vehicle scanning method has attracted considerable attention during the last two decades.However,most previous studies have adopted unrealistic vehicle models,thus finding limited practical applications.This study proposes a smartphone-based BF identification method that uses the contact-point acceleration response of a four degree-of-freedom vehicle model.The said response can be inferred from the vehicle body response measured by a smartphone.For realizing practical applications,this method is incorporated into a self-developed smartphone app to obtain data smoothly and identify BFs in a timely manner.Numerical and experimental investigations are performed to verify the effectiveness of the proposed method.In particular,the robustness of this method is investigated numerically against various factors,including the vehicle speed,bridge span,road roughness,and bridge type.Furthermore,laboratory calibration tests are performed to investigate the accuracy of the smartphone gyroscope in measuring the angular velocity,where anomalous data are detected and eliminated.Laboratory experiment results for a simply supported bridge indicate that the proposed method can be used to identify the first two BFs with acceptable accuracy. 展开更多
关键词 bridge frequency(BF)identification vehiclebridge interaction four degree-of-freedom(DOF)vehicle model contact-point response SMARTPHONE
下载PDF
Dynamic Reliability Assessment of Heavy Vehicle Crossing a Prototype Bridge Deck by Using Simulation Technology and Health Monitoring Data
10
作者 Yinghua Li Junyong He +1 位作者 Xiaoqing Zeng Yanxing Tang 《Journal of Architectural Environment & Structural Engineering Research》 2022年第4期10-17,共8页
Overloads of vehicle may cause damage to bridge structures,and how to assess the safety influence of heavy vehicles crossing the prototype bridge is one of the challenges.In this report,using a large amount of monitor... Overloads of vehicle may cause damage to bridge structures,and how to assess the safety influence of heavy vehicles crossing the prototype bridge is one of the challenges.In this report,using a large amount of monitored data collected from the structural health monitoring system(SHMS)in service of the prototype bridge,of which the bridge type is large-span continuous rigid frame bridge,and adopting FEM simulation technique,we suggested a dynamic reliability assessment method in the report to assess the safety impact of heavy vehicles on the prototype bridge during operation.In the first place,by using the health monitored strain data,of which the selected monitored data time range is before the opening of traffic,the quasi dynamic reliability around the embedded sensor with no traffic load effects is obtained;then,with FEM technology,the FEM simulation model of one main span of the prototype bridge is built by using ANSYS software and then the dynamic reliability when the heavy vehicles crossing the prototype bridge corresponding to the middle-span web plate is comprehensively analyzed and discussed.At last,assuming that the main beam stress state change is in the stage of approximately linear elasticity under heavy vehicle loads impact,the authors got the impact level of heavy vehicles effects on the dynamic reliability of the prototype bridge.Based on a large number of field measured data,the dynamic reliability value calculated by our proposed methodology is more accurate.The method suggested in the paper can do good for not only the traffic management but also the damage analysis of bridges. 展开更多
关键词 Large-span continuous rigid frame bridge Heavy vehicle dynamic reliability evaluation SHM Finite element simulation technology
下载PDF
Effect of vehicle weight on natural frequencies of bridges measured from traffic-induced vibration 被引量:16
11
作者 Chul-Young Kim Dae-Sung Jung +2 位作者 Nam-Sik Kim Soon-Duck Kwon Maria Q.Feng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2003年第1期109-116,共8页
Recently,ambient vibration test(AVT)is widely used tu estimate dynamic characteristics of large civil struc- tures.Dynamic characteristics ean be affected by various envirnnmental factors such as humidity,intensity of... Recently,ambient vibration test(AVT)is widely used tu estimate dynamic characteristics of large civil struc- tures.Dynamic characteristics ean be affected by various envirnnmental factors such as humidity,intensity of wind,and temperature.Besides these environmental conditions,tire mass of vehicles may change the measured valnes when traffic-in- duced vibration is used as a source of AVT tor bridges.The effect of vehicle mass on dynamic characteristics is investigated through traffic-induced vibration tests on three bridges;(1)three-span suspension bridge(128m+404m+128m),(2) five-span continuous steel box girder bridge(59m+3@ 95m+59m),(3)simply supported plate girder bridge(46m). Acceleration histories of each measurement location under normal traffic are recorded for 30 minutes at field.These recor- ded histories are divided into individual vibrations and are combined into two groups aceording to the level of vibration;one by heavy vehicles such as trucks and buses and the other by light vehicles such as passenger cars.Separate processing of the two groups of signals shows that,for the middle and long-span bridges,the difference can be hardly detected,but,for the short span bridges whose mass is relatively small,the measured natural frequencies can change up to 5.4%. 展开更多
关键词 ambient vibration test traffic induced vibration vehicle mass suspension bridge short-span bridge dynamic characteristics natural frequency
下载PDF
Numerical simulation of dynamic characteristics of a cable-stayed aqueduct bridge 被引量:8
12
作者 LiYuchun Di Qingshuang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第4期569-579,共11页
In this paper, a full-scale 3-D finite element model of the Jundushan cable-stayed aqueduct bridge is established with ANSYS Code. The shell, fluid, tension-only spar and beam elements are used for modeling the aquedu... In this paper, a full-scale 3-D finite element model of the Jundushan cable-stayed aqueduct bridge is established with ANSYS Code. The shell, fluid, tension-only spar and beam elements are used for modeling the aqueduct deck, filled water, cables and support towers, respectively. A multi-element cable formulation is introduced to simulate the cable vibration. The dry (without water) and wet (with water) modes of the aqueduct bridge are both extracted and investigated in detail. The dry modes of the aqueduct bridge are basically similar to those of highway cable-stayed bridges. A dry mode may correspond to two types of wet modes, which are called the in-phase (with lower frequency) and out-of-phase (with higher frequency) modes. When the water-structure system vibrates in the in-phase/out-of-phase modes, the aqueduct deck moves and water sloshes in the same/opposite phase-angle, and the sloshing water may take different surface-wave modes. The wet modes of the system reflect the properties of interaction among the deck, towers, cables and water. The in-phase wet frequency generally decreases as the water depth increases, and the out-of-phase wet frequency may increase or decrease as the water depth increases. 展开更多
关键词 CABLE-STAYED aqueduct bridge dynamic characteristics fluid-structure interaction numerical simulation
下载PDF
On dynamic analysis method for large-scale train-track-substructure interaction 被引量:2
13
作者 Lei Xu 《Railway Engineering Science》 2022年第2期162-182,共21页
Train–track–substructure dynamic interaction is an extension of the vehicle–track coupled dynamics.It contributes to evaluate dynamic interaction and performance between train–track system and its substructures.Fo... Train–track–substructure dynamic interaction is an extension of the vehicle–track coupled dynamics.It contributes to evaluate dynamic interaction and performance between train–track system and its substructures.For the first time,this work devotes to presenting engineering practical methods for modeling and solving such large-scale train–track–substructure interaction systems from a unified viewpoint.In this study,a train consists of several multi-rigid-body vehicles,and the track is modeled by various finite elements.The track length needs only satisfy the length of a train plus boundary length at two sides,despite how long the train moves on the track.The substructures and their interaction matrices to the upper track are established as independent modules,with no need for additionally building the track structures above substructures,and accordingly saving computational cost.Track–substructure local coordinates are defined to assist the confirming of the overlapped portions between the train–track system and the substructural system to effectively combine the cyclic calculation and iterative solution procedures.The advancement of this model lies in its convenience,efficiency and accuracy in continuously considering the vibration participation of multi-types of substructures against the moving of a train on the track.Numerical examples have shown the effectiveness of this method;besides,influence of substructures on train–track dynamic behaviors is illustrated accompanied by clarifying excitation difference of different track irregularity spectrums. 展开更多
关键词 TRAIN Track dynamic interaction Railway substructures Finite elements dynamics system Iterative solution Tunnel bridge
下载PDF
Seismic response analysis of road vehicle-bridge system for continuous rigid frame bridges with high piers 被引量:10
14
作者 Li Yongle Chen Ning +1 位作者 Zhao Kai Liao Haili 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第4期593-602,共10页
The objective of this study is to investigate the effects of earthquakes on road vehicle-bridge coupling vibration systems. A two-axle highway freight vehicle is treated as a 13 degree-of-freedom system composed of se... The objective of this study is to investigate the effects of earthquakes on road vehicle-bridge coupling vibration systems. A two-axle highway freight vehicle is treated as a 13 degree-of-freedom system composed of several rigid bodies, which are connected by a series of springs and dampers. The framework of the earthquake-vehicle-bridge dynamic analysis system is then established using an earthquake as the extemal excitation. The equivalent lateral contact force serves as the judgment criteria for sideslip accidents according to reliability theory. The entire process of the vehicle crossing the bridge is considered for a very high pier continuous rigid frame bridge. The response characteristics of the vehicle and the bridge are discussed in terms of various parameters such as earthquake ground motion, PGA value of the earthquake, incident angle, pier height, vehicle speed and mass. It is found that seismic excitation is the most influential factor in the responses of the vehicle-bridge system and that the safety of vehicles crossing the bridge is seriously impacted by the dual excitations of earthquake and bridge vibration. 展开更多
关键词 vehicle-bridge system coupling vibration seismic effects SAFETY dynamic response
下载PDF
Positioning in Dynamic Testing of Slender Bridges
15
作者 Alexander Tesar Jan Bencat 《Positioning》 2011年第3期103-111,共9页
The positioning combined with multi-functioning and interactive mechanics in dynamic testing of slender bridges are treated in present paper. The approach takes into account multiple functions in dynamic testing of sl... The positioning combined with multi-functioning and interactive mechanics in dynamic testing of slender bridges are treated in present paper. The approach takes into account multiple functions in dynamic testing of slender bridges constructed of thin-walled structural members with their hierarchical configuration. Theoretical, numerical and experimental in situ assessments of the problem are presented. Some results of the application in situ are submitted. 展开更多
关键词 bridgeS Deformation POSITIONING dynamic Testing interactive MECHANICS FOURIER Transformation Mul-ti-functioning Optimization Virtual Monitoring Wave Propagation
下载PDF
COUPLING VIBRATION OF VEHICLE-BRIDGE SYSTEM
16
作者 陈炎 黄小清 马友发 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第4期390-395,共6页
By applying the sinusoidal wave mode to simulate the rugged surface of bridge deck,accounting for vehicle-bridge interaction and using Euler-Bernoulli beam theory, a coupling vibration model of vehicle-bridge system w... By applying the sinusoidal wave mode to simulate the rugged surface of bridge deck,accounting for vehicle-bridge interaction and using Euler-Bernoulli beam theory, a coupling vibration model of vehicle-bridge system was developed. The model was solved by mode analyzing method and Runge-Kutta method, and the dynamic response and the resonance curve of the bridge were obtained. It is found that there are two resonance regions, one represents the main resonance while the other the minor resonance, in the resonance curve. The influence due to the rugged surface, the vibration mode of bridge, and the interaction between vehicle and bridge on vibration of the system were discussed. Numerical results show that the influence due to these parameters is so significant that the effect of roughness of the bridge deck and the mode shape of the bridge can't be ignored and the vehicle velocity should be kept away from the critical speed of the vehicle. 展开更多
关键词 coupling vibration dynamic response RESONANCE vehicle-bridge system critical speed of vehicle
下载PDF
Research on the Dynamic Response of Submerged Floating Tunnels to Wave Currents and Traffic Load
17
作者 Bolin Jiang Shanshan Wu +1 位作者 Min Ji Bo Liang 《Fluid Dynamics & Materials Processing》 EI 2023年第1期159-173,共15页
Submerged floating tunnel(SFTs)are typically subjected to complex external environmental and internal loads such as wave currents and traffic load.In this study,this problem is investigated through a finite element me... Submerged floating tunnel(SFTs)are typically subjected to complex external environmental and internal loads such as wave currents and traffic load.In this study,this problem is investigated through a finite element method able to account for fluid-structure interaction.The obtained results show that increasing the number of vehicles per unit length enhances the transverse vibrational displacements of the SFT cross sections.Under ultimate traffic load condition,one-way and two-way syntropic distributions can promote the dynamic responses of SFTs whereas two-way reverse distributions have the opposite effect. 展开更多
关键词 Submerged floating tunnel vehicle load dynamic response wave and current loads fluid-structure interaction
下载PDF
Computer Simulation of Dynamic Interactions Between Vehicle and Long Span Box Girder Bridges 被引量:5
18
作者 Moe S. Cheung 《Tsinghua Science and Technology》 SCIE EI CAS 2008年第S1期71-77,共7页
Moving vehicle loads, associated with roadway traffic can induce significant dynamic effects on the structural behaviours of bridges, especially for long-span bridges. The main objective of current research is to stud... Moving vehicle loads, associated with roadway traffic can induce significant dynamic effects on the structural behaviours of bridges, especially for long-span bridges. The main objective of current research is to study traffic induced dynamic responses of long-span box-girder bridges. The finite element method has been employed in this study to obtain a three-dimensional mathematical model for the bridge system. For vehicle-bridge dynamic interaction analysis, the vehicle is modeled as a more realistic three-axle, six-wheel system, and the corresponding dynamic interaction equations have been derived. The bridge-vehicle interaction is affected by many factors. The current study has been focused on such factors as: vehicle speed, vehicle damping ratio, multiple traffic lanes, mass ratio of vehicle and bridge, and dynamic characteristics of bridge. Case studies have been conducted to investigate these factors by using several box girder bridge examples including Confederation Bridge, the longest box girder bridge in the world. 展开更多
关键词 VIBRATION box girder bridge long-span bridge-vehicle interaction finite element analysis
原文传递
Running safety analysis of a train on the Tsing Ma Bridge under turbulent winds 被引量:11
19
作者 Guo Weiwei Xia He Xu Youlin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第3期307-318,共12页
The dynamic responses of the Tsing Ma suspension bridge and the running behaviors of trains on the bridge under turbulent wind actions are analyzed by a three-dimensional wind-train-bridge interaction model. This mode... The dynamic responses of the Tsing Ma suspension bridge and the running behaviors of trains on the bridge under turbulent wind actions are analyzed by a three-dimensional wind-train-bridge interaction model. This model consists of a spatial finite element bridge model, a train model composed of eight 4-axle identical coaches of 27 degrees-of-freedom, and a turbulent wind model. The fluctuating wind forces, including the buffeting forces and the self-excited forces, act on the bridge only, since the train runs inside the bridge deck. The dynamic responses of the bridge are calculated and some results are compared with data measured from Typhoon York. The runnability of the train passing through the Tsing Ma suspension bridge at different speeds is researched under turbulent winds with different wind velocities. Then, the threshold curve of wind velocity for ensuring the running safety of the train in the bridge deck is proposed, from which the allowable train speed at different wind velocities can be determined. The numerical results show that rail traffic on the Tsing Ma suspension bridge should be closed as the mean wind velocity reaches 30 m/s. 展开更多
关键词 Tsing Ma bridge turbulent wind dynamic interaction running safety THRESHOLD wind velocity
下载PDF
Evaluation of vertical impact factor coefficients for continuous and integral railway bridges under high-speed moving loads 被引量:4
20
作者 Anand M.Gharad Ranjan S.Sonparote 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第2期495-504,共10页
In the railway bridge analysis and design method,dynamic train loads are regarded as static loads enhanced by an impact factor(IF).The IF coefficients for various railway bridges have been reported as a function of sp... In the railway bridge analysis and design method,dynamic train loads are regarded as static loads enhanced by an impact factor(IF).The IF coefficients for various railway bridges have been reported as a function of span length or frequency of the bridges in Eurocode(2003).However,these IF coefficient values neglect the effects of very high speeds(>200 km/h)and soil-structure interaction(SSI).In this work,a comprehensive study to assess the impact factor coefficients of mid-span vertical displacements for continuous and integral railway bridges subjected to high-speed moving loads is reported.Three different configurations,each for the three-dimensional(3D)continuous and integral bridge,are considered.Also,single-track(1-T)and two-track(2-T)“real train”loading cases for both these bridge types are considered.Subsequently,finite element analysis of the full-scale 3D bridge models,to identify their IF values,considering the effects of SSI for three different soil conditions,is conducted.The IF values obtained from the study for both bridge types are comparable and are greater than the values recommended by Eurocode(2003).The results reveal that with a loss of soil stiffness,the IF value reduces;thus,it confirms the importance of SSI analysis. 展开更多
关键词 impact factor dynamic soil-structure interaction high-speed moving loads finite element analysis continuous bridge integral bridge
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部