The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied. The differential equations of motion of the Ni...The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Lie symmetry, and the expression of the Hojman conserved quantity deduced directly from the Lie symmetry for the system are obtained. An example is given to illustrate the application of the results.展开更多
In this paper,the Kane’s equations for the Routh’s form of variable massnonholonomic systems are established.and the Kane’s equations for percussion motionof variable mass holonomic and nonholonomic systems are d...In this paper,the Kane’s equations for the Routh’s form of variable massnonholonomic systems are established.and the Kane’s equations for percussion motionof variable mass holonomic and nonholonomic systems are deduced from them. Secondly,the equivalence to Lagrange’s equations for percussion motion and Kane’sequations is obtained,and the application of the new equation is illustrated by anexample.展开更多
A systematic method is developed to studY the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge fie...A systematic method is developed to studY the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the traditional Schwarzschild solution. Combining the principle of gauge covariance and Newton's second law of motion, the equation of motion of a mass point in gravitational field is deduced. Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.展开更多
In order to analyze the pavement stress caused by vehicle bumping at an approach slab, a simplified four-wheeled bi- axle vehicle-moving model is proposed. The effect of damping and vibration reduction in the process ...In order to analyze the pavement stress caused by vehicle bumping at an approach slab, a simplified four-wheeled bi- axle vehicle-moving model is proposed. The effect of damping and vibration reduction in the process of vehicle-moving is not considered. Based on the position change of vehicle wheels at the approach slab, the vehicle dynamic vibration equations are summarized. Meanwhile, the undetermined coefficients of the vibration equations are obtained using the boundary and initial conditions of the vehicle. The analytical motion solutions of rear and front wheels at different stages are concluded. Consequently, a four-wheeled vehicle model is developed and vibration equations are provided, which can be used to analyze the impact of complicated stress on pavement. The results show that the excessive stress and stress concentration will occur at the approach slab, and it needs to be strengthened.展开更多
The vehicles with high gravity centre are more prone to roll over. The paper deals with a method of dynamics analysis of fire engines which is an example of these types of vehicle. Algorithms for generating the equati...The vehicles with high gravity centre are more prone to roll over. The paper deals with a method of dynamics analysis of fire engines which is an example of these types of vehicle. Algorithms for generating the equations of motion have been formulated by homogenous transformations and Lagrange's equation. The model presented in this article consists of a system of rigid bodies connected one with another forming an open kinematic chain. Road maneuvers such as a lane change and negotiating a circular track have been presented as the main simulations when a car loses its stability. The method has been verified by comparing numerical results with results obtained by experimental measurements performed during road tests.展开更多
For steady frictionless flow along a straight line, when a constant acceleration is applied parallel to that line, a term needs to be added to the standard form of Bernoulli’s equation. After so modifying, the equati...For steady frictionless flow along a straight line, when a constant acceleration is applied parallel to that line, a term needs to be added to the standard form of Bernoulli’s equation. After so modifying, the equation then predicts that along a streamline, when the speed is high, the pressure is significantly lower than that if there were no acceleration. For example, one might think of a dense fluid falling down through a less dense fluid under gravity. Potential applications to vertical motions of the atmosphere, such as down bursts of cold dry air and warm humid updrafts in the eye of a hurricane, are mentioned.展开更多
The present study deals with a traditional physical problem: the solution of the Kepler’s equation for all conics (ellipse, hyperbola or parabola). Solution of the universal Kepler’s equation in closed form is obtai...The present study deals with a traditional physical problem: the solution of the Kepler’s equation for all conics (ellipse, hyperbola or parabola). Solution of the universal Kepler’s equation in closed form is obtained with the help of the two-dimensional Laplace technique, expressing the universal functions as a function of the universal anomaly and the time. Combining these new expressions of the universal functions and their identities, we establish one biquadratic equation for universal anomaly (χ) for all conics;solving this new equation, we have a new exact solution of the present problem for the universal anomaly as a function of the time. The verifying of the universal Kepler’s equation and the traditional forms of Kepler’s equation from this new solution are discussed. The plots of the elliptic, hyperbolic or parabolic Keplerian orbits are also given, using this new solution.展开更多
To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and a...To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and according to spatial geometric properties of tool path and the kinematics theory, maximum optimal velocities at dangerous points are obtained. Based on method of velocity control characteristics stored in control system, a fast algorithm for velocity smooth link is analyzed and formulated. On-line implementation results show that the proposed approach makes velocity changing more smoothly compared with traditional velocity control methods and improves productivity greatly.展开更多
Recent developments in the measurement of radioactive gases in passive diffusion motivate the analysis of Brownian motion of decaying particles, a subject that has received little previous attention. This paper report...Recent developments in the measurement of radioactive gases in passive diffusion motivate the analysis of Brownian motion of decaying particles, a subject that has received little previous attention. This paper reports the derivation and solution of equations comparable to the Fokker-Planck and Langevin equations for one-dimensional diffusion and decay of unstable particles. In marked contrast to the case of stable particles, the two equations are not equivalent, but provide different information regarding the same stochastic process. The differences arise because Brownian motion with particle decay is not a continuous process. The discontinuity is readily apparent in the computer-simulated trajectories of the Langevin equation that incorporate both a Wiener process for displacement fluctuations and a Bernoulli process for random decay. This paper also reports the derivation of the mean time of first passage of the decaying particle to absorbing boundaries. Here, too, particle decay can lead to an outcome markedly different from that for stable particles. In particular, the first-passage time of the decaying particle is always finite, whereas the time for a stable particle to reach a single absorbing boundary is theoretically infinite due to the heavy tail of the inverse Gaussian density. The methodology developed in this paper should prove useful in the investigation of radioactive gases, aerosols of radioactive atoms, dust particles to which adhere radioactive ions, as well as diffusing gases and liquids of unstable molecules.展开更多
This paper concerns the development and application of the Hamiltonian function which is the sum of kinetic energy and potential energy of the system. Two dimensional water wave equations for irrotational, incompressi...This paper concerns the development and application of the Hamiltonian function which is the sum of kinetic energy and potential energy of the system. Two dimensional water wave equations for irrotational, incompressible, inviscid fluid have been constructed in cartesian coordinates and also in cylindrical coordinates. Then Lagrangian function within a certain flow region is expanded under the assumption that the dispersion μ and the nonlinearity ε satisfied . Using Hamilton’s principle for water wave evolution Hamiltonian formulation is derived. It is obvious that the motion of the system is conservative. Then Hamilton’s canonical equation of motion is also derived.展开更多
Motion equations of AUV(autonomous underwater vehicle) load separation with the constraint of anchor chain is derived.Based on proper engineering assumptions for anchor chain,system viewpoint is used to found the moti...Motion equations of AUV(autonomous underwater vehicle) load separation with the constraint of anchor chain is derived.Based on proper engineering assumptions for anchor chain,system viewpoint is used to found the motion equations,and the D'Alembert principle is used to eliminate the constraint force of anchor chain.Based on the equations,the motion simulation is carried out to a certain AUV,which reflects the actual condition,and is used for the reference of resrarching AUV load separation motion with the constraint of anchor chain.展开更多
Based on the Navier-Stokes equation, an average wave energy equation and a generalized wave action conservation equation are presented in this paper. The turbulence effects on water particle velocity u i and wave s...Based on the Navier-Stokes equation, an average wave energy equation and a generalized wave action conservation equation are presented in this paper. The turbulence effects on water particle velocity u i and wave surface elavation ξ as well as energy dissipation are included. Some simplified forms are also given.展开更多
There exists a property “structural stability” for “4-dimensional canards” which is a singular-limit solution in a slow-fast system with a bifurcation parameter. It means that the system includes the possibility t...There exists a property “structural stability” for “4-dimensional canards” which is a singular-limit solution in a slow-fast system with a bifurcation parameter. It means that the system includes the possibility to have some critical values on the bifurcation parameter. Corresponding to these values, the pseudo-singular point, which is a singular point in the time-scaled-reduced system should be changed to another one. Then, the canards may fly to another pseudo-singular point, if possible. Can the canards fly? The structural stability gives the possibility for the canards flying. The precise reasons why happen are described in this paper.展开更多
文摘The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Lie symmetry, and the expression of the Hojman conserved quantity deduced directly from the Lie symmetry for the system are obtained. An example is given to illustrate the application of the results.
文摘In this paper,the Kane’s equations for the Routh’s form of variable massnonholonomic systems are established.and the Kane’s equations for percussion motionof variable mass holonomic and nonholonomic systems are deduced from them. Secondly,the equivalence to Lagrange’s equations for percussion motion and Kane’sequations is obtained,and the application of the new equation is illustrated by anexample.
文摘A systematic method is developed to studY the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the traditional Schwarzschild solution. Combining the principle of gauge covariance and Newton's second law of motion, the equation of motion of a mass point in gravitational field is deduced. Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.
基金The Doctoral Program of Central South University (No. 2010ybfz048)the National High Technology Research and Development Program of China (863 Program) (No. 2007AA021908)
文摘In order to analyze the pavement stress caused by vehicle bumping at an approach slab, a simplified four-wheeled bi- axle vehicle-moving model is proposed. The effect of damping and vibration reduction in the process of vehicle-moving is not considered. Based on the position change of vehicle wheels at the approach slab, the vehicle dynamic vibration equations are summarized. Meanwhile, the undetermined coefficients of the vibration equations are obtained using the boundary and initial conditions of the vehicle. The analytical motion solutions of rear and front wheels at different stages are concluded. Consequently, a four-wheeled vehicle model is developed and vibration equations are provided, which can be used to analyze the impact of complicated stress on pavement. The results show that the excessive stress and stress concentration will occur at the approach slab, and it needs to be strengthened.
基金supported by National Science Centre in Cracow under doctoral research grant 0630/B/T02/2011/40
文摘The vehicles with high gravity centre are more prone to roll over. The paper deals with a method of dynamics analysis of fire engines which is an example of these types of vehicle. Algorithms for generating the equations of motion have been formulated by homogenous transformations and Lagrange's equation. The model presented in this article consists of a system of rigid bodies connected one with another forming an open kinematic chain. Road maneuvers such as a lane change and negotiating a circular track have been presented as the main simulations when a car loses its stability. The method has been verified by comparing numerical results with results obtained by experimental measurements performed during road tests.
文摘For steady frictionless flow along a straight line, when a constant acceleration is applied parallel to that line, a term needs to be added to the standard form of Bernoulli’s equation. After so modifying, the equation then predicts that along a streamline, when the speed is high, the pressure is significantly lower than that if there were no acceleration. For example, one might think of a dense fluid falling down through a less dense fluid under gravity. Potential applications to vertical motions of the atmosphere, such as down bursts of cold dry air and warm humid updrafts in the eye of a hurricane, are mentioned.
文摘The present study deals with a traditional physical problem: the solution of the Kepler’s equation for all conics (ellipse, hyperbola or parabola). Solution of the universal Kepler’s equation in closed form is obtained with the help of the two-dimensional Laplace technique, expressing the universal functions as a function of the universal anomaly and the time. Combining these new expressions of the universal functions and their identities, we establish one biquadratic equation for universal anomaly (χ) for all conics;solving this new equation, we have a new exact solution of the present problem for the universal anomaly as a function of the time. The verifying of the universal Kepler’s equation and the traditional forms of Kepler’s equation from this new solution are discussed. The plots of the elliptic, hyperbolic or parabolic Keplerian orbits are also given, using this new solution.
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No. 2002AA421150)Specialized Re-search Fund for Doctor Program of Higher Education of China (No. 20030335091).
文摘To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and according to spatial geometric properties of tool path and the kinematics theory, maximum optimal velocities at dangerous points are obtained. Based on method of velocity control characteristics stored in control system, a fast algorithm for velocity smooth link is analyzed and formulated. On-line implementation results show that the proposed approach makes velocity changing more smoothly compared with traditional velocity control methods and improves productivity greatly.
文摘Recent developments in the measurement of radioactive gases in passive diffusion motivate the analysis of Brownian motion of decaying particles, a subject that has received little previous attention. This paper reports the derivation and solution of equations comparable to the Fokker-Planck and Langevin equations for one-dimensional diffusion and decay of unstable particles. In marked contrast to the case of stable particles, the two equations are not equivalent, but provide different information regarding the same stochastic process. The differences arise because Brownian motion with particle decay is not a continuous process. The discontinuity is readily apparent in the computer-simulated trajectories of the Langevin equation that incorporate both a Wiener process for displacement fluctuations and a Bernoulli process for random decay. This paper also reports the derivation of the mean time of first passage of the decaying particle to absorbing boundaries. Here, too, particle decay can lead to an outcome markedly different from that for stable particles. In particular, the first-passage time of the decaying particle is always finite, whereas the time for a stable particle to reach a single absorbing boundary is theoretically infinite due to the heavy tail of the inverse Gaussian density. The methodology developed in this paper should prove useful in the investigation of radioactive gases, aerosols of radioactive atoms, dust particles to which adhere radioactive ions, as well as diffusing gases and liquids of unstable molecules.
文摘This paper concerns the development and application of the Hamiltonian function which is the sum of kinetic energy and potential energy of the system. Two dimensional water wave equations for irrotational, incompressible, inviscid fluid have been constructed in cartesian coordinates and also in cylindrical coordinates. Then Lagrangian function within a certain flow region is expanded under the assumption that the dispersion μ and the nonlinearity ε satisfied . Using Hamilton’s principle for water wave evolution Hamiltonian formulation is derived. It is obvious that the motion of the system is conservative. Then Hamilton’s canonical equation of motion is also derived.
文摘Motion equations of AUV(autonomous underwater vehicle) load separation with the constraint of anchor chain is derived.Based on proper engineering assumptions for anchor chain,system viewpoint is used to found the motion equations,and the D'Alembert principle is used to eliminate the constraint force of anchor chain.Based on the equations,the motion simulation is carried out to a certain AUV,which reflects the actual condition,and is used for the reference of resrarching AUV load separation motion with the constraint of anchor chain.
文摘Based on the Navier-Stokes equation, an average wave energy equation and a generalized wave action conservation equation are presented in this paper. The turbulence effects on water particle velocity u i and wave surface elavation ξ as well as energy dissipation are included. Some simplified forms are also given.
文摘There exists a property “structural stability” for “4-dimensional canards” which is a singular-limit solution in a slow-fast system with a bifurcation parameter. It means that the system includes the possibility to have some critical values on the bifurcation parameter. Corresponding to these values, the pseudo-singular point, which is a singular point in the time-scaled-reduced system should be changed to another one. Then, the canards may fly to another pseudo-singular point, if possible. Can the canards fly? The structural stability gives the possibility for the canards flying. The precise reasons why happen are described in this paper.