期刊文献+
共找到324,783篇文章
< 1 2 250 >
每页显示 20 50 100
Deep Transfer Learning Techniques in Intrusion Detection System-Internet of Vehicles: A State-of-the-Art Review
1
作者 Wufei Wu Javad Hassannataj Joloudari +8 位作者 Senthil Kumar Jagatheesaperumal Kandala N.V.P.SRajesh Silvia Gaftandzhieva Sadiq Hussain Rahimullah Rabih Najibullah Haqjoo Mobeen Nazar Hamed Vahdat-Nejad Rositsa Doneva 《Computers, Materials & Continua》 SCIE EI 2024年第8期2785-2813,共29页
The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accide... The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accident prevention,cost reduction,and enhanced traffic regularity.Despite these benefits,IoV technology is susceptible to cyber-attacks,which can exploit vulnerabilities in the vehicle network,leading to perturbations,disturbances,non-recognition of traffic signs,accidents,and vehicle immobilization.This paper reviews the state-of-the-art achievements and developments in applying Deep Transfer Learning(DTL)models for Intrusion Detection Systems in the Internet of Vehicles(IDS-IoV)based on anomaly detection.IDS-IoV leverages anomaly detection through machine learning and DTL techniques to mitigate the risks posed by cyber-attacks.These systems can autonomously create specific models based on network data to differentiate between regular traffic and cyber-attacks.Among these techniques,transfer learning models are particularly promising due to their efficacy with tagged data,reduced training time,lower memory usage,and decreased computational complexity.We evaluate DTL models against criteria including the ability to transfer knowledge,detection rate,accurate analysis of complex data,and stability.This review highlights the significant progress made in the field,showcasing how DTL models enhance the performance and reliability of IDS-IoV systems.By examining recent advancements,we provide insights into how DTL can effectively address cyber-attack challenges in IoV environments,ensuring safer and more efficient transportation networks. 展开更多
关键词 Cyber-attacks internet of things internet of vehicles intrusion detection system
下载PDF
A Real-Time Small Target Vehicle Detection Algorithm with an Improved YOLOv5m Network Model
2
作者 Yaoyao Du Xiangkui Jiang 《Computers, Materials & Continua》 SCIE EI 2024年第1期303-327,共25页
To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight arc... To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight architecture based on You Only Look Once(YOLO)v5m.Firstly,a lightweight upsampling operator called Content-Aware Reassembly of Features(CARAFE)is introduced in the feature fusion layer of the network to maximize the extraction of deep-level features for small target vehicles,reducing the missed detection rate and false detection rate.Secondly,a new prediction layer for tiny targets is added,and the feature fusion network is redesigned to enhance the detection capability for small targets.Finally,this paper applies L1 regularization to train the improved network,followed by pruning and fine-tuning operations to remove redundant channels,reducing computational and parameter complexity and enhancing the detection efficiency of the network.Training is conducted on the VisDrone2019-DET dataset.The experimental results show that the proposed algorithmreduces parameters and computation by 63.8% and 65.8%,respectively.The average detection accuracy improves by 5.15%,and the detection speed reaches 47 images per second,satisfying real-time requirements.Compared with existing approaches,including YOLOv5m and classical vehicle detection algorithms,our method achieves higher accuracy and faster speed for real-time detection of small target vehicles in edge computing. 展开更多
关键词 vehicle detection YOLOv5m small target channel pruning CARAFE
下载PDF
A New Vehicle Detection Framework Based on Feature-Guided in the Road Scene
3
作者 Tianmin Deng Xiyue Zhang Xinxin Cheng 《Computers, Materials & Continua》 SCIE EI 2024年第1期533-549,共17页
Vehicle detection plays a crucial role in the field of autonomous driving technology.However,directly applying deep learning-based object detection algorithms to complex road scene images often leads to subpar perform... Vehicle detection plays a crucial role in the field of autonomous driving technology.However,directly applying deep learning-based object detection algorithms to complex road scene images often leads to subpar performance and slow inference speeds in vehicle detection.Achieving a balance between accuracy and detection speed is crucial for real-time object detection in real-world road scenes.This paper proposes a high-precision and fast vehicle detector called the feature-guided bidirectional pyramid network(FBPN).Firstly,to tackle challenges like vehicle occlusion and significant background interference,the efficient feature filtering module(EFFM)is introduced into the deep network,which amplifies the disparities between the features of the vehicle and the background.Secondly,the proposed global attention localization module(GALM)in the model neck effectively perceives the detailed position information of the target,improving both the accuracy and inference speed of themodel.Finally,the detection accuracy of small-scale vehicles is further enhanced through the utilization of a four-layer feature pyramid structure.Experimental results show that FBPN achieves an average precision of 60.8% and 97.8% on the BDD100K and KITTI datasets,respectively,with inference speeds reaching 344.83 frames/s and 357.14 frames/s.FBPN demonstrates its effectiveness and superiority by striking a balance between detection accuracy and inference speed,outperforming several state-of-the-art methods. 展开更多
关键词 Driverless car vehicle detection channel attention mechanism deep learning
下载PDF
A Fault Detection Method for Electric Vehicle Battery System Based on Bayesian Optimization SVDD Considering a Few Faulty Samples
4
作者 Miao Li Fanyong Cheng +2 位作者 Jiong Yang Maxwell Mensah Duodu Hao Tu 《Energy Engineering》 EI 2024年第9期2543-2568,共26页
Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersp... Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersphere boundary only describes the distribution of unlabeled samples,while the distribution of faulty samples cannot be effectively described and easilymisses detecting faulty data due to the imbalance of sample distribution.Meanwhile,selecting parameters is critical to the detection performance,and empirical parameterization is generally timeconsuming and laborious and may not result in finding the optimal parameters.Therefore,this paper proposes a semi-supervised data-driven method based on which the SVDD algorithm is improved and achieves excellent fault detection performance.By incorporating faulty samples into the underlying SVDD model,training deals better with the problem of missing detection of faulty samples caused by the imbalance in the distribution of abnormal samples,and the hypersphere boundary ismodified to classify the samplesmore accurately.The Bayesian Optimization NSVDD(BO-NSVDD)model was constructed to quickly and accurately optimize hyperparameter combinations.In the experiments,electric vehicle operation data with four common fault types are used to evaluate the performance with other five models,and the results show that the BO-NSVDD model presents superior detection performance for each type of fault data,especially in the imperceptible early and minor faults,which has seen very obvious advantages.Finally,the strong robustness of the proposed method is verified by adding different intensities of noise in the dataset. 展开更多
关键词 Fault detection vehicle battery system lithium batteries fault samples
下载PDF
Improved YOLOv8s-Based Night Vehicle Detection
5
作者 WAN Xin-ei SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期76-85,共10页
With the gradual development of automatic driving technology,people’s attention is no longer limited to daily automatic driving target detection.In response to the problem that it is difficult to achieve fast and acc... With the gradual development of automatic driving technology,people’s attention is no longer limited to daily automatic driving target detection.In response to the problem that it is difficult to achieve fast and accurate detection of visual targets in complex scenes of automatic driving at night,a detection algorithm based on improved YOLOv8s was proposed.Firsly,By adding Triplet Attention module into the lower sampling layer of the original model,the model can effectively retain and enhance feature information related to target detection on the lower-resolution feature map.This enhancement improved the robustness of the target detection network and reduced instances of missed detections.Secondly,the Soft-NMS algorithm was introduced to address the challenges of dealing with dense targets,overlapping objects,and complex scenes.This algorithm effectively reduced false and missed positives,thereby improved overall detection performance when faced with highly overlapping detection results.Finally,the experimental results on the MPDIoU loss function dataset showed that compared with the original model,the improved method,in which mAP and accuracy are increased by 2.9%and 2.8%respectively,can achieve better detection accuracy and speed in night vehicle detection.It can effectively improve the problem of target detection in night scenes. 展开更多
关键词 vehicle detection Yolov8 Attention mechanism
下载PDF
Vehicle Abnormal Behavior Detection Based on Dense Block and Soft Thresholding
6
作者 Yuanyao Lu Wei Chen +2 位作者 Zhanhe Yu Jingxuan Wang Chaochao Yang 《Computers, Materials & Continua》 SCIE EI 2024年第6期5051-5066,共16页
With the rapid advancement of social economies,intelligent transportation systems are gaining increasing atten-tion.Central to these systems is the detection of abnormal vehicle behavior,which remains a critical chall... With the rapid advancement of social economies,intelligent transportation systems are gaining increasing atten-tion.Central to these systems is the detection of abnormal vehicle behavior,which remains a critical challenge due to the complexity of urban roadways and the variability of external conditions.Current research on detecting abnormal traffic behaviors is still nascent,with significant room for improvement in recognition accuracy.To address this,this research has developed a new model for recognizing abnormal traffic behaviors.This model employs the R3D network as its core architecture,incorporating a dense block to facilitate feature reuse.This approach not only enhances performance with fewer parameters and reduced computational demands but also allows for the acquisition of new features while simplifying the overall network structure.Additionally,this research integrates a self-attentive method that dynamically adjusts to the prevailing traffic conditions,optimizing the relevance of features for the task at hand.For temporal analysis,a Bi-LSTM layer is utilized to extract and learn from time-based data nuances.This research conducted a series of comparative experiments using the UCF-Crime dataset,achieving a notable accuracy of 89.30%on our test set.Our results demonstrate that our model not only operates with fewer parameters but also achieves superior recognition accuracy compared to previous models. 展开更多
关键词 vehicle abnormal behavior deep learning ResNet dense block soft thresholding
下载PDF
IR-YOLO: Real-Time Infrared Vehicle and Pedestrian Detection
7
作者 Xiao Luo Hao Zhu Zhenli Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第2期2667-2687,共21页
Road traffic safety can decrease when drivers drive in a low-visibility environment.The application of visual perception technology to detect vehicles and pedestrians in infrared images proves to be an effective means... Road traffic safety can decrease when drivers drive in a low-visibility environment.The application of visual perception technology to detect vehicles and pedestrians in infrared images proves to be an effective means of reducing the risk of accidents.To tackle the challenges posed by the low recognition accuracy and the substan-tial computational burden associated with current infrared pedestrian-vehicle detection methods,an infrared pedestrian-vehicle detection method A proposal is presented,based on an enhanced version of You Only Look Once version 5(YOLOv5).First,A head specifically designed for detecting small targets has been integrated into the model to make full use of shallow feature information to enhance the accuracy in detecting small targets.Second,the Focal Generalized Intersection over Union(GIoU)is employed as an alternative to the original loss function to address issues related to target overlap and category imbalance.Third,the distribution shift convolution optimization feature extraction operator is used to alleviate the computational burden of the model without significantly compromising detection accuracy.The test results of the improved algorithm show that its average accuracy(mAP)reaches 90.1%.Specifically,the Giga Floating Point Operations Per second(GFLOPs)of the improved algorithm is only 9.1.In contrast,the improved algorithms outperformed the other algorithms on similar GFLOPs,such as YOLOv6n(11.9),YOLOv8n(8.7),YOLOv7t(13.2)and YOLOv5s(16.0).The mAPs that are 4.4%,3%,3.5%,and 1.7%greater than those of these algorithms show that the improved algorithm achieves higher accuracy in target detection tasks under similar computational resource overhead.On the other hand,compared with other algorithms such as YOLOv8l(91.1%),YOLOv6l(89.5%),YOLOv7(90.8%),and YOLOv3(90.1%),the improved algorithm needs only 5.5%,2.3%,8.6%,and 2.3%,respectively,of the GFLOPs.The improved algorithm has shown significant advancements in balancing accuracy and computational efficiency,making it promising for practical use in resource-limited scenarios. 展开更多
关键词 Traffic safety infrared image pedestrians and vehicles focal GIoU distributed shift convolution
下载PDF
Semantic Segmentation and YOLO Detector over Aerial Vehicle Images
8
作者 Asifa Mehmood Qureshi Abdul Haleem Butt +5 位作者 Abdulwahab Alazeb Naif Al Mudawi Mohammad Alonazi Nouf Abdullah Almujally Ahmad Jalal Hui Liu 《Computers, Materials & Continua》 SCIE EI 2024年第8期3315-3332,共18页
Intelligent vehicle tracking and detection are crucial tasks in the realm of highway management.However,vehicles come in a range of sizes,which is challenging to detect,affecting the traffic monitoring system’s overa... Intelligent vehicle tracking and detection are crucial tasks in the realm of highway management.However,vehicles come in a range of sizes,which is challenging to detect,affecting the traffic monitoring system’s overall accuracy.Deep learning is considered to be an efficient method for object detection in vision-based systems.In this paper,we proposed a vision-based vehicle detection and tracking system based on a You Look Only Once version 5(YOLOv5)detector combined with a segmentation technique.The model consists of six steps.In the first step,all the extracted traffic sequence images are subjected to pre-processing to remove noise and enhance the contrast level of the images.These pre-processed images are segmented by labelling each pixel to extract the uniform regions to aid the detection phase.A single-stage detector YOLOv5 is used to detect and locate vehicles in images.Each detection was exposed to Speeded Up Robust Feature(SURF)feature extraction to track multiple vehicles.Based on this,a unique number is assigned to each vehicle to easily locate them in the succeeding image frames by extracting them using the feature-matching technique.Further,we implemented a Kalman filter to track multiple vehicles.In the end,the vehicle path is estimated by using the centroid points of the rectangular bounding box predicted by the tracking algorithm.The experimental results and comparison reveal that our proposed vehicle detection and tracking system outperformed other state-of-the-art systems.The proposed implemented system provided 94.1%detection precision for Roundabout and 96.1%detection precision for Vehicle Aerial Imaging from Drone(VAID)datasets,respectively. 展开更多
关键词 Semantic segmentation YOLOv5 vehicle detection and tracking Kalman filter SURF
下载PDF
MEB-YOLO: An Efficient Vehicle Detection Method in Complex Traffic Road Scenes 被引量:5
9
作者 Yingkun Song Shunhe Hong +4 位作者 Chentao Hu Pingan He Lingbing Tao Zhixin Tie Chengfu Ding 《Computers, Materials & Continua》 SCIE EI 2023年第6期5761-5784,共24页
Rapid and precise vehicle recognition and classification are essential for intelligent transportation systems,and road target detection is one of the most difficult tasks in the field of computer vision.The challenge ... Rapid and precise vehicle recognition and classification are essential for intelligent transportation systems,and road target detection is one of the most difficult tasks in the field of computer vision.The challenge in real-time road target detection is the ability to properly pinpoint relatively small vehicles in complicated environments.However,because road targets are prone to complicated backgrounds and sparse features,it is challenging to detect and identify vehicle kinds fast and reliably.We suggest a new vehicle detection model called MEB-YOLO,which combines Mosaic and MixUp data augmentation,Efficient Channel Attention(ECA)attention mechanism,Bidirectional Feature Pyramid Network(BiFPN)with You Only Look Once(YOLO)model,to overcome this problem.Four sections make up this model:Input,Backbone,Neck,and Prediction.First,to improve the detection dataset and strengthen the network,MixUp and Mosaic data improvement are used during the picture processing step.Second,an attention mechanism is introduced to the backbone network,which is Cross Stage Par-tial Darknet(CSPDarknet),to reduce the influence of irrelevant features in images.Third,to achieve more sophisticated feature fusion without increasing computing cost,the BiFPN structure is utilized to build the Neck network of the model.The final prediction results are then obtained using Decoupled Head.Experiments demonstrate that the proposed model outperforms several already available detection methods and delivers good detection results on the University at Albany DEtection and TRACking(UA-DETRAC)public dataset.It also enables effective vehicle detection on real traffic monitoring data.As a result,this technique is efficient for detecting road targets. 展开更多
关键词 Target detection YOLO ECA attention mechanism MOSAIC MixUp BiFPN
下载PDF
Vehicle Detection and Tracking in UAV Imagery via YOLOv3 and Kalman Filter 被引量:2
10
作者 Shuja Ali Ahmad Jalal +2 位作者 Mohammed Hamad Alatiyyah Khaled Alnowaiser Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2023年第7期1249-1265,共17页
Unmanned aerial vehicles(UAVs)can be used to monitor traffic in a variety of settings,including security,traffic surveillance,and traffic control.Numerous academics have been drawn to this topic because of the challen... Unmanned aerial vehicles(UAVs)can be used to monitor traffic in a variety of settings,including security,traffic surveillance,and traffic control.Numerous academics have been drawn to this topic because of the challenges and the large variety of applications.This paper proposes a new and efficient vehicle detection and tracking system that is based on road extraction and identifying objects on it.It is inspired by existing detection systems that comprise stationary data collectors such as induction loops and stationary cameras that have a limited field of view and are not mobile.The goal of this study is to develop a method that first extracts the region of interest(ROI),then finds and tracks the items of interest.The suggested system is divided into six stages.The photos from the obtained dataset are appropriately georeferenced to their actual locations in the first phase,after which they are all co-registered.The ROI,or road and its objects,are retrieved using the GrabCut method in the second phase.The third phase entails data preparation.The segmented images’noise is eliminated using Gaussian blur,after which the images are changed to grayscale and forwarded to the following stage for additional morphological procedures.The YOLOv3 algorithm is used in the fourth step to find any automobiles in the photos.Following that,the Kalman filter and centroid tracking are used to perform the tracking of the detected cars.The Lucas-Kanade method is then used to perform the trajectory analysis on the vehicles.The suggested model is put to the test and assessed using the Vehicle Aerial Imaging from Drone(VAID)dataset.For detection and tracking,the model was able to attain accuracy levels of 96.7%and 91.6%,respectively. 展开更多
关键词 Kalman filter GEOREFERENCING object detection object tracking YOLO
下载PDF
Unmanned Aerial Vehicle Assisted Forest Fire Detection Using Deep Convolutional Neural Network 被引量:2
11
作者 A.K.Z Rasel Rahman S.M.Nabil Sakif +3 位作者 Niloy Sikder Mehedi Masud Hanan Aljuaid Anupam Kumar Bairagi 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3259-3277,共19页
Disasters may occur at any time and place without little to no presage in advance.With the development of surveillance and forecasting systems,it is now possible to forebode the most life-threatening and formidable di... Disasters may occur at any time and place without little to no presage in advance.With the development of surveillance and forecasting systems,it is now possible to forebode the most life-threatening and formidable disasters.However,forestfires are among the ones that are still hard to anticipate beforehand,and the technologies to detect and plot their possible courses are still in development.Unmanned Aerial Vehicle(UAV)image-basedfire detection systems can be a viable solution to this problem.However,these automatic systems use advanced deep learning and image processing algorithms at their core and can be tuned to provide accurate outcomes.Therefore,this article proposed a forestfire detection method based on a Convolutional Neural Network(CNN)architecture using a newfire detection dataset.Notably,our method also uses separable convolution layers(requiring less computational resources)for immediatefire detection and typical convolution layers.Thus,making it suitable for real-time applications.Consequently,after being trained on the dataset,experimental results show that the method can identify forestfires within images with a 97.63%accuracy,98.00%F1 Score,and 80%Kappa.Hence,if deployed in practical circumstances,this identification method can be used as an assistive tool to detectfire outbreaks,allowing the authorities to respond quickly and deploy preventive measures to minimize damage. 展开更多
关键词 Forestfire detection UAV CNN machine learning
下载PDF
Optimal Deep Convolutional Neural Network for Vehicle Detection in Remote Sensing Images
12
作者 Saeed Masoud Alshahrani Saud S.Alotaibi +5 位作者 Shaha Al-Otaibi Mohamed Mousa Anwer Mustafa Hilal Amgad Atta Abdelmageed Abdelwahed Motwakel Mohamed I.Eldesouki 《Computers, Materials & Continua》 SCIE EI 2023年第2期3117-3131,共15页
Object detection(OD)in remote sensing images(RSI)acts as a vital part in numerous civilian and military application areas,like urban planning,geographic information system(GIS),and search and rescue functions.Vehicle ... Object detection(OD)in remote sensing images(RSI)acts as a vital part in numerous civilian and military application areas,like urban planning,geographic information system(GIS),and search and rescue functions.Vehicle recognition from RSIs remained a challenging process because of the difficulty of background data and the redundancy of recognition regions.The latest advancements in deep learning(DL)approaches permit the design of effectual OD approaches.This study develops an Artificial Ecosystem Optimizer with Deep Convolutional Neural Network for Vehicle Detection(AEODCNN-VD)model on Remote Sensing Images.The proposed AEODCNN-VD model focuses on the identification of vehicles accurately and rapidly.To detect vehicles,the presented AEODCNN-VD model employs single shot detector(SSD)with Inception network as a baseline model.In addition,Multiway Feature Pyramid Network(MFPN)is used for handling objects of varying sizes in RSIs.The features from the Inception model are passed into theMFPNformultiway andmultiscale feature fusion.Finally,the fused features are passed into bounding box and class prediction networks.For enhancing the detection efficiency of the AEODCNN-VD approach,AEO based hyperparameter optimizer is used,which is stimulated by the energy transfer strategies such as production,consumption,and decomposition in an ecosystem.The performance validation of the presentedmethod on benchmark datasets showed promising performance over recent DL models. 展开更多
关键词 Object detection remote sensing vehicle detection artificial ecosystem optimizer convolutional neural network
下载PDF
Traffic Sign Detection with Low Complexity for Intelligent Vehicles Based on Hybrid Features
13
作者 Sara Khalid Jamal Hussain Shah +2 位作者 Muhammad Sharif Muhammad Rafiq Gyu Sang Choi 《Computers, Materials & Continua》 SCIE EI 2023年第7期861-879,共19页
Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians.Consequently,traffic signs have been of great importance for every civilized country,which makes resea... Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians.Consequently,traffic signs have been of great importance for every civilized country,which makes researchers give more focus on the automatic detection of traffic signs.Detecting these traffic signs is challenging due to being in the dark,far away,partially occluded,and affected by the lighting or the presence of similar objects.An innovative traffic sign detection method for red and blue signs in color images is proposed to resolve these issues.This technique aimed to devise an efficient,robust and accurate approach.To attain this,initially,the approach presented a new formula,inspired by existing work,to enhance the image using red and green channels instead of blue,which segmented using a threshold calculated from the correlational property of the image.Next,a new set of features is proposed,motivated by existing features.Texture and color features are fused after getting extracted on the channel of Red,Green,and Blue(RGB),Hue,Saturation,and Value(HSV),and YCbCr color models of images.Later,the set of features is employed on different classification frameworks,from which quadratic support vector machine(SVM)outnumbered the others with an accuracy of 98.5%.The proposed method is tested on German Traffic Sign Detection Benchmark(GTSDB)images.The results are satisfactory when compared to the preceding work. 展开更多
关键词 Traffic sign detection intelligent systems COMPLEXITY vehicleS color moments texture features
下载PDF
Pedestrian and Vehicle Detection Based on Pruning YOLOv4 with Cloud-Edge Collaboration
14
作者 Huabin Wang Ruichao Mo +3 位作者 Yuping Chen Weiwei Lin Minxian Xu Bo Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期2025-2047,共23页
Nowadays,the rapid development of edge computing has driven an increasing number of deep learning applications deployed at the edge of the network,such as pedestrian and vehicle detection,to provide efficient intellig... Nowadays,the rapid development of edge computing has driven an increasing number of deep learning applications deployed at the edge of the network,such as pedestrian and vehicle detection,to provide efficient intelligent services to mobile users.However,as the accuracy requirements continue to increase,the components of deep learning models for pedestrian and vehicle detection,such as YOLOv4,become more sophisticated and the computing resources required for model training are increasing dramatically,which in turn leads to significant challenges in achieving effective deployment on resource-constrained edge devices while ensuring the high accuracy performance.For addressing this challenge,a cloud-edge collaboration-based pedestrian and vehicle detection framework is proposed in this paper,which enables sufficient training of models by utilizing the abundant computing resources in the cloud,and then deploying the well-trained models on edge devices,thus reducing the computing resource requirements for model training on edge devices.Furthermore,to reduce the size of the model deployed on edge devices,an automatic pruning method combines the convolution layer and BN layer is proposed to compress the pedestrian and vehicle detection model size.Experimental results show that the framework proposed in this paper is able to deploy the pruned model on a real edge device,Jetson TX2,with 6.72 times higher FPS.Meanwhile,the channel pruning reduces the volume and the number of parameters to 96.77%for the model,and the computing amount is reduced to 81.37%. 展开更多
关键词 Pedestrian and vehicle detection YOLOv4 channel pruning cloud-edge collaboration
下载PDF
3D Vehicle Detection Algorithm Based onMultimodal Decision-Level Fusion
15
作者 Peicheng Shi Heng Qi +1 位作者 Zhiqiang Liu Aixi Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2007-2023,共17页
3D vehicle detection based on LiDAR-camera fusion is becoming an emerging research topic in autonomous driving.The algorithm based on the Camera-LiDAR object candidate fusion method(CLOCs)is currently considered to be... 3D vehicle detection based on LiDAR-camera fusion is becoming an emerging research topic in autonomous driving.The algorithm based on the Camera-LiDAR object candidate fusion method(CLOCs)is currently considered to be a more effective decision-level fusion algorithm,but it does not fully utilize the extracted features of 3D and 2D.Therefore,we proposed a 3D vehicle detection algorithm based onmultimodal decision-level fusion.First,project the anchor point of the 3D detection bounding box into the 2D image,calculate the distance between 2D and 3D anchor points,and use this distance as a new fusion feature to enhance the feature redundancy of the network.Subsequently,add an attention module:squeeze-and-excitation networks,weight each feature channel to enhance the important features of the network,and suppress useless features.The experimental results show that the mean average precision of the algorithm in the KITTI dataset is 82.96%,which outperforms previous state-ofthe-art multimodal fusion-based methods,and the average accuracy in the Easy,Moderate and Hard evaluation indicators reaches 88.96%,82.60%,and 77.31%,respectively,which are higher compared to the original CLOCs model by 1.02%,2.29%,and 0.41%,respectively.Compared with the original CLOCs algorithm,our algorithm has higher accuracy and better performance in 3D vehicle detection. 展开更多
关键词 3D vehicle detection multimodal fusion CLOCs network structure optimization attention module
下载PDF
A Novel Ego Lanes Detection Method for Autonomous Vehicles
16
作者 Bilal Bataineh 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1941-1961,共21页
Autonomous vehicles are currently regarded as an interesting topic in the AI field.For such vehicles,the lane where they are traveling should be detected.Most lane detection methods identify the whole road area with a... Autonomous vehicles are currently regarded as an interesting topic in the AI field.For such vehicles,the lane where they are traveling should be detected.Most lane detection methods identify the whole road area with all the lanes built on it.In addition to having a low accuracy rate and slow processing time,these methods require costly hardware and training datasets,and they fail under critical conditions.In this study,a novel detection algo-rithm for a lane where a car is currently traveling is proposed by combining simple traditional image processing with lightweight machine learning(ML)methods.First,a preparation phase removes all unwanted information to preserve the topographical representations of virtual edges within a one-pixel width around expected lanes.Then,a simple feature extraction phase obtains only the intersection point position and angle degree of each candidate edge.Subsequently,a proposed scheme that comprises consecutive lightweight ML models is applied to detect the correct lane by using the extracted features.This scheme is based on the density-based spatial clustering of applications with noise,random forest trees,a neural network,and rule-based methods.To increase accuracy and reduce processing time,each model supports the next one during detection.When a model detects a lane,the subsequent models are skipped.The models are trained on the Karlsruhe Institute of Technology and Toyota Technological Institute datasets.Results show that the proposed method is faster and achieves higher accuracy than state-of-the-art methods.This method is simple,can handle degradation conditions,and requires low-cost hardware and training datasets. 展开更多
关键词 Autonomous vehicles ego lane detection image processing machine learning
下载PDF
Rice Bacterial Infection Detection Using Ensemble Technique on Unmanned Aerial Vehicles Images
17
作者 Sathit Prasomphan 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期991-1007,共17页
Establishing a system for measuring plant health and bacterial infection is critical in agriculture.Previously,the farmers themselves,who observed them with their eyes and relied on their experience in analysis,which ... Establishing a system for measuring plant health and bacterial infection is critical in agriculture.Previously,the farmers themselves,who observed them with their eyes and relied on their experience in analysis,which could have been incorrect.Plant inspection can determine which plants reflect the quantity of green light and near-infrared using infrared light,both visible and eye using a drone.The goal of this study was to create algorithms for assessing bacterial infections in rice using images from unmanned aerial vehicles(UAVs)with an ensemble classification technique.Convolution neural networks in unmanned aerial vehi-cles image were used.To convey this interest,the rice’s health and bacterial infec-tion inside the photo were detected.The project entailed using pictures to identify bacterial illnesses in rice.The shape and distinct characteristics of each infection were observed.Rice symptoms were defined using machine learning and image processing techniques.Two steps of a convolution neural network based on an image from a UAV were used in this study to determine whether this area will be affected by bacteria.The proposed algorithms can be utilized to classify the types of rice deceases with an accuracy rate of 89.84 percent. 展开更多
关键词 Bacterial infection detection adaptive deep learning unmanned aerial vehicles image retrieval
下载PDF
Application Research of an Intelligent Detection Algorithm for Vehicle Trajectory Route Deviation
18
作者 Jianfei Luo Yadong Xing +2 位作者 Cheng Chen Weiqing Zhang Zhongcheng Wu 《Journal of Computer and Communications》 2023年第10期1-11,共11页
In the vehicle trajectory application system, it is often necessary to detect whether the vehicle deviates from the specified route. Trajectory planning in the traditional route deviation detection is defined by the d... In the vehicle trajectory application system, it is often necessary to detect whether the vehicle deviates from the specified route. Trajectory planning in the traditional route deviation detection is defined by the driver through the mobile phone navigation software, which plays a more auxiliary driving role. This paper presents a method of vehicle trajectory deviation detection. Firstly, the manager customizes the trajectory planning and then uses big data technologies to match the deviation between the trajectory planning and the vehicle trajectory. Finally, it achieves the supervisory function of the manager on the vehicle track route in real-time. The results show that this method could detect the vehicle trajectory deviation quickly and accurately, and has practical application value. 展开更多
关键词 vehicle Positioning Terminal vehicle Trajectory Route Deviation Real-Time Segmentation Analysis Algorithm
下载PDF
Received Power Based Unmanned Aerial Vehicles (UAVs) Jamming Detection and Nodes Classification Using Machine Learning
19
作者 Waleed Aldosari 《Computers, Materials & Continua》 SCIE EI 2023年第4期1253-1269,共17页
This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional ... This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional interference where a malicious node transmits a high-power signal to increase noise on the receiver side to disrupt the communication channel and reduce performance significantly.To defend and prevent such attacks,the first step is to detect them.The current detection approaches use centralized techniques to detect jamming,where each node collects information and forwards it to the base station.As a result,overhead and communication costs increased.In this work,we present a jamming attack and classify nodes into different categories based on their location to the jammer by employing a single node observer.As a result,we introduced a machine learning model that uses distance ratios and power received as features to detect such attacks.Furthermore,we considered several types of jammers transmitting at different power levels to evaluate the proposed metrics using MATLAB.With a detection accuracy of 99.7%for the k-nearest neighbors(KNN)algorithm and average testing accuracy of 99.9%,the presented solution is capable of efficiently and accurately detecting jamming attacks in wireless sensor networks. 展开更多
关键词 Jamming attacks machine learning unmanned aerial vehicle(UAV) WSNS
下载PDF
Sparsity-Enhanced Model-Based Method for Intelligent Fault Detection of Mechanical Transmission Chain in Electrical Vehicle
20
作者 Wangpeng He Yue Zhou +2 位作者 Xiaoya Guo Deshun Hu Junjie Ye 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2495-2511,共17页
In today’s world,smart electric vehicles are deeply integrated with smart energy,smart transportation and smart cities.In electric vehicles(EVs),owing to the harsh working conditions,mechanical parts are prone to fat... In today’s world,smart electric vehicles are deeply integrated with smart energy,smart transportation and smart cities.In electric vehicles(EVs),owing to the harsh working conditions,mechanical parts are prone to fatigue damages,which endanger the driving safety of EVs.The practice has proved that the identification of periodic impact characteristics(PICs)can effectively indicate mechanical faults.This paper proposes a novel model-based approach for intelligent fault diagnosis ofmechanical transmission train in EVs.The essential idea of this approach lies in the fusion of statistical information and model information froma dynamic process.In the algorithm,a novel fractal wavelet decomposition(FWD)is used to investigate the time-frequency representation of the input signal.Based on the sparsity of the PIC model in the Hilbert envelope spectrum,amethod for evaluating PIC energy ratio(PICER)is defined based on an over-complete Fourier dictionary.A compound indicator considering kurtosis and PICER of dynamic signal is designed.Using this index,evaluations of the impulsiveness of the cycle-stationary process can be enabled,thus avoiding serious interference from the sporadic impact during measurements.The robustness of the proposed approach to noise is demonstrated via numerical simulations,and an engineering application is employed to validate its effectiveness. 展开更多
关键词 Electric vehicles fractal wavelet decomposition fault diagnosis sparse representation cycle-stationary process
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部