This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and ...This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and anti-lock braking system(ABS).First,a longitudinal-vertical coupled vehicle dynamics model is established by integrating a road input model.Then the coupling mechanisms between longitudinal and vertical vehicle dynamics are analyzed.An ASS-ABS integrated control system is proposed,utilizing an H∞controller for ASS to optimize load transfer effect and a neural network sliding mode control for ABS implementation.Finally,the effectiveness of the proposed control scheme is evaluated through comprehensive tests conducted on a hardware-in-loop(HIL)test platform.The HIL test results demonstrate that the proposed control scheme can significantly improve the braking performance and ride comfort compared to conventional ABS control methods.展开更多
Vision-based vehicle detection in adverse weather conditions such as fog,haze,and mist is a challenging research area in the fields of autonomous vehicles,collision avoidance,and Internet of Things(IoT)-enabled edge/f...Vision-based vehicle detection in adverse weather conditions such as fog,haze,and mist is a challenging research area in the fields of autonomous vehicles,collision avoidance,and Internet of Things(IoT)-enabled edge/fog computing traffic surveillance and monitoring systems.Efficient and cost-effective vehicle detection at high accuracy and speed in foggy weather is essential to avoiding road traffic collisions in real-time.To evaluate vision-based vehicle detection performance in foggy weather conditions,state-of-the-art Vehicle Detection in Adverse Weather Nature(DAWN)and Foggy Driving(FD)datasets are self-annotated using the YOLO LABEL tool and customized to four vehicle detection classes:cars,buses,motorcycles,and trucks.The state-of-the-art single-stage deep learning algorithms YOLO-V5,and YOLO-V8 are considered for the task of vehicle detection.Furthermore,YOLO-V5s is enhanced by introducing attention modules Convolutional Block Attention Module(CBAM),Normalized-based Attention Module(NAM),and Simple Attention Module(SimAM)after the SPPF module as well as YOLO-V5l with BiFPN.Their vehicle detection accuracy parameters and running speed is validated on cloud(Google Colab)and edge(local)systems.The mAP50 score of YOLO-V5n is 72.60%,YOLOV5s is 75.20%,YOLO-V5m is 73.40%,and YOLO-V5l is 77.30%;and YOLO-V8n is 60.20%,YOLO-V8s is 73.50%,YOLO-V8m is 73.80%,and YOLO-V8l is 72.60%on DAWN dataset.The mAP50 score of YOLO-V5n is 43.90%,YOLO-V5s is 40.10%,YOLO-V5m is 49.70%,and YOLO-V5l is 57.30%;and YOLO-V8n is 41.60%,YOLO-V8s is 46.90%,YOLO-V8m is 42.90%,and YOLO-V8l is 44.80%on FD dataset.The vehicle detection speed of YOLOV5n is 59 Frame Per Seconds(FPS),YOLO-V5s is 47 FPS,YOLO-V5m is 38 FPS,and YOLO-V5l is 30 FPS;and YOLO-V8n is 185 FPS,YOLO-V8s is 109 FPS,YOLO-V8m is 72 FPS,and YOLO-V8l is 63 FPS on DAWN dataset.The vehicle detection speed of YOLO-V5n is 26 FPS,YOLO-V5s is 24 FPS,YOLO-V5m is 22 FPS,and YOLO-V5l is 17 FPS;and YOLO-V8n is 313 FPS,YOLO-V8s is 182 FPS,YOLO-V8m is 99 FPS,and YOLO-V8l is 60 FPS on FD dataset.YOLO-V5s,YOLO-V5s variants and YOLO-V5l_BiFPN,and YOLO-V8 algorithms are efficient and cost-effective solution for real-time vision-based vehicle detection in foggy weather.展开更多
In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pu...In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pumping voltage and PWM ratio is derived and a new digital control method to restrain the pumping voltage by changing PWM ratio is put forward. Because the capacitance is decreased effectively, the volume of controller is reduced and the performance to price ratio is improved. The results of computer simulation and experiment proved that this method is feasible and valid.展开更多
The utilization of traffic information received from intelligent vehicle highway systems(IVHS) to plan velocity and split output power for multi-source vehicles is currently a research hotspot. However, it is an open ...The utilization of traffic information received from intelligent vehicle highway systems(IVHS) to plan velocity and split output power for multi-source vehicles is currently a research hotspot. However, it is an open issue to plan vehicle velocity and distribute output power between different supply units simultaneously due to the strongly coupling characteristic of the velocity planning and the power distribution. To address this issue, a flexible predictive power-split control strategy based on IVHS is proposed for electric vehicles(EVs) equipped with battery-supercapacitor system(BSS). Unlike hierarchical strategies to plan vehicle velocity and distribute output power separately, a monolayer model predictive control(MPC) method is employed to optimize them online at the same time. Firstly, a flexible velocity planning strategy is designed based on the signal phase and time(SPAT) information received from IVHS and then the Pontryagin’s minimum principle(PMP) is adopted to formulate the optimal control problem of the BSS. Then, the flexible velocity planning strategy and the optimal control problem of BSS are embedded into an MPC framework, which is online solved using the shooting method in a fashion of receding horizon. Simulation results verify that the proposed strategy achieves a superior performance compared with the hierarchical strategy in terms of transportation efficiency, battery capacity loss, energy consumption and computation time.展开更多
Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, th...Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, the motor regenerative braking is readmitted. Aiming at avoiding permanent cycles from hydraulic anti-lock braking to motor regenerative braking, a novel electro-mechanical hybrid anti-lock braking system using fuzzy logic is designed. Different from the traditional single control structure, this system has a two-layered hierarchical structure, The first layer is responsible for harmonious adjustment or interaction between regenerative system and anti-lock braking system. The second layer is responsible for braking torque distribution and adjustment. The closed-loop simulation model is built. Control strategy and method for coordination between regenerative and anti-lock braking are developed. Simulation braking on low adhesion-coefficient roads with fuzzy logic control and real vehicle braking field test are presented. The results from simulating analysis and experiment show braking performance of the vehicle is perfect, harmonious coordination between regenerative and anti-lock braking function, significant amount of braking energy can be recovered and the proposed control strategy and method are effective.展开更多
Resolvers are normally employed for rotor positioning in motors for electric vehicles, but resolvers are expensive and vulnerable to vibrations. Hall sensors have the advantages of low cost and high reliability, but t...Resolvers are normally employed for rotor positioning in motors for electric vehicles, but resolvers are expensive and vulnerable to vibrations. Hall sensors have the advantages of low cost and high reliability, but the positioning accuracy is low. Motors with Hall sensors are typically controlled by six-step commutation algorithm, which brings high torque ripple. This paper studies the high-performance driving and braking control of the in-wheel permanent magnetic synchronous motor (PMSM) based on low-resolution Hall sensors. Field oriented control (FOC) based on Hall-effect sensors is developed to reduce the torque ripple. The positioning accuracy of the Hall sensors is improved by interpolation between two consecutive Hall signals using the estimated motor speed. The position error from the misalignment of the Hall sensors is compensated by the precise calibration of Hall transition timing. The braking control algorithms based on six-step commutation and FOC are studied. Two variants of the six-step commutation braking control, namely, half-bridge commutation and full-bridge commutation, are discussed and compared, which shows that the full-bridge commutation could better explore the potential of the back electro-motive forces (EMF), thus can deliver higher efficiency and smaller current ripple. The FOC braking is analyzed with the phasor diagrams. At a given motor speed, the motor turns from the regenerative braking mode into the plug braking mode if the braking torque exceeds a certain limit, which is proportional to the motor speed. Tests in the dynamometer show that a smooth control could be realized by FOC driving control and the highest efficiency and the smallest current ripple could be achieved by FOC braking control, compared to six-step commutation braking control. Therefore, FOC braking is selected as the braking control algorithm for electric vehicles. The proposed research ensures a good motor control performance while maintaining low cost and high reliability.展开更多
The hydraulic caliper disc brake system with air-over-oil is widely adopted at present for heavy vehicles,which makes use of air pressure system propelling the hydraulic pressure system acting on friction plates divid...The hydraulic caliper disc brake system with air-over-oil is widely adopted at present for heavy vehicles,which makes use of air pressure system propelling the hydraulic pressure system acting on friction plates divided and combined for braking.There are some disadvantages such as pneumatic components failure,dust polluted and produce lots of heat in hydraulic caliper disc brake system.Moreover,considering the demands of the high speed,heavy weight,heavy load and fast brake of heavy vehicles,the full power hydraulic brake system based on double pipelines for heavy vehicles is designed and analyzed in this paper.The scheme of the full power hydraulic brake system,in which the triloculare cylinder is controlled by dual brake valve,is adopted in the brake system.The full power hydraulic brake system can accomplish steering brake,parking brake and emergent brake for heavy vehicles.Furthermore,electronic control system that is responsible for coordinating the work of hydraulic decelerator and hydraulic brake system is developed for different speed brakes.Based on the analysis of the influence of composed unit and connecting pipeline on braking performance,the nonlinear mathematic model is established for the full power hydraulic brake system.The braking completion time and braking pressure in braking performance of the double-pipeline steering brake and parking brake are discussed by means of simulation experiments based on Matlab/Simulink,and the simulation results prove that the braking performance of steering brake and parking brake meets the designing requirement of the full power hydraulic brake system.Moreover,the test-bed experiments of the brake system for heavy vehicles are carried out.The experimental data prove that the braking performance achieves the goal of the design,and that the full power hydraulic brake system based on double pipelines can effectively enhance braking performance,ensure braking reliability and security for heavy vehicles.展开更多
Regenerative braking was the process of converting the kinetic energy and potential energy, which were stored in the vehicle body when vehicle braked or went downhill, into electrical energy and storing it into batter...Regenerative braking was the process of converting the kinetic energy and potential energy, which were stored in the vehicle body when vehicle braked or went downhill, into electrical energy and storing it into battery. The problem on how to distribute braking forces of front wheel and rear wheel for electric vehicles with four-wheel drive was more complex than that for electric vehicles with front-wheel drive or rear-wheel drive. In this work, the frictional braking forces distribution curve of front wheel and rear wheel is determined by optimizing the braking force distribution curve of hydraulic proportional-adjustable valve, and then the safety brake range is obtained correspondingly. A new braking force distribution strategy based on regenerative braking strength continuity is proposed to solve the braking force distribution problem for electric vehicles with four-wheel drive. Highway fuel economy test(HWFET) driving condition is used to provide the speed signals, the braking force equations of front wheel and rear wheel are expressed with linear equations. The feasibility, effectiveness, and practicality of the new braking force distribution strategy based on regenerative braking strength continuity are verified by regenerative braking strength simulation curve and braking force distribution simulation curves of front wheel and rear wheel. The proposed strategy is simple in structure, easy to be implemented and worthy being spread.展开更多
Historical roadway safety analyses have used labor and time-intensive crash data collection procedures. However, crash reporting is often delayed and crash locations are reported with varying levels of spatial accurac...Historical roadway safety analyses have used labor and time-intensive crash data collection procedures. However, crash reporting is often delayed and crash locations are reported with varying levels of spatial accuracy and detail. Recent advances in connected vehicle (CV) data provide an opportunity for stakeholders to proactively identify areas of safety concerns in near-real time with high spatial precision. Public and private sector stakeholders including automotive original equipment manufacturers (OEM) and insurance providers may independently define acceleration thresholds for reporting unsafe driver behavior. Although some OEMs have provided fixed threshold hard-braking event data for a number of years, this varies by OEM and there is no published literature on the best thresholds to use for identifying emerging safety issues. This research proposes a methodology to estimate deceleration events from raw CV trajectory data at varying thresholds that can be scaled to any CV. The estimated deceleration events and crash incident records around 629 interstate exits in Indiana were analyzed for a three-month period from March 1-May 31, 2023. Nearly 20 million estimated deceleration events and 4800 crash records were spatially joined to a 2-mile search radius around each exit ramp. Results showed that deceleration events between -0.5 g and -0.4 g had the highest correlation with an R<sup>2</sup> of 0.69. This study also identifies the top 20 interstate exit locations with highest deceleration events. The framework presented in this study enables agencies and transportation professionals to perform safety evaluations on raw trajectory data without the need to integrate external data sources.展开更多
Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is ad...Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is added by electric motor, the braking torque distribution between front and rear axles should be changed and the control logic of anti-lock braking system (ABS) ought to be adjusted according to the regenerative braking torque. This paper put forward a braking control strategy for hybrid electric vehicle; the control strategy is implemented with eight DOFs (Degree-of-Freedom) nonlinear vehicle forward simulation model which is built under the environment of Matlab/Simulink. Based on target wheel slip ratio, a fuzzy logic approach was applied to maintain the optimal target slip ratio so that best compromise between hydraulic torque and regenerative torque can be obtained for the vehicle.展开更多
Most researches focus on the regenerative braking system design in vehicle components control and braking torque distribution,few combine the connected vehicle technologies into braking velocity planning.If the brakin...Most researches focus on the regenerative braking system design in vehicle components control and braking torque distribution,few combine the connected vehicle technologies into braking velocity planning.If the braking intention is accessed by the vehicle-to-everything communication,the electric vehicles(EVs)could plan the braking velocity for recovering more vehicle kinetic energy.Therefore,this paper presents an energy-optimal braking strategy(EOBS)to improve the energy efficiency of EVs with the consideration of shared braking intention.First,a double-layer control scheme is formulated.In the upper-layer,an energy-optimal braking problem with accessed braking intention is formulated and solved by the distance-based dynamic programming algorithm,which could derive the energy-optimal braking trajectory.In the lower-layer,the nonlinear time-varying vehicle longitudinal dynamics is transformed to the linear time-varying system,then an efficient model predictive controller is designed and solved by quadratic programming algorithm to track the original energy-optimal braking trajectory while ensuring braking comfort and safety.Several simulations are conducted by jointing MATLAB and CarSim,the results demonstrated the proposed EOBS achieves prominent regeneration energy improvement than the regular constant deceleration braking strategy.Finally,the energy-optimal braking mechanism of EVs is investigated based on the analysis of braking deceleration,battery charging power,and motor efficiency,which could be a guide to real-time control.展开更多
To investigate the influence of wet conditions on vehicle braking behavior,a numerical-analytical method was proposed for the simulation of tire hydroplaning and frictional energy dissipation. First, a finite element ...To investigate the influence of wet conditions on vehicle braking behavior,a numerical-analytical method was proposed for the simulation of tire hydroplaning and frictional energy dissipation. First, a finite element model of tire hydroplaning was established using the coupled EulerianLagrangian method,including a pneumatic tire model and a textured asphalt pavement model. Then,the frictional force on the tire-pavement interface at different speeds was calculated by the model. Based on vehicle braking mechanism and frictional energy dissipation,a calculation method for braking distance was proposed based on a three-stage braking process. The proposed method was verified by comparing the calculated hydroplaning speed and braking distance with field test results.Then,vehicle braking distances and wet friction coefficients were calculated under different conditions. The results show that thinner water film,a more complex tread pattern and higher tire inflation pressure all contribute to the vehicle braking performance; moreover, the pavement texture has obvious influence on vehicle braking behavior,especially at a high speed. The proposed method shows great effectiveness in predicting vehicle braking behavior on wet asphalt pavements.展开更多
The operating mode of a single shaft hybrid electric vehicle (SSHEV) in which the electric motor exerts negative torque on the shaft to imitate engine braking is analyzed. The method of determining the quantity of r...The operating mode of a single shaft hybrid electric vehicle (SSHEV) in which the electric motor exerts negative torque on the shaft to imitate engine braking is analyzed. The method of determining the quantity of regenerative braking torque is proposed with the premise that the braking intensity required by the driver is satisfied. On this basis, factors that affect torque generated by the motor are listed, and how the battery' s temperature and state of charge ( SOC ) restrict and correct the braking torque is expounded. Finally, road test results show that the motor' s constant power or constant torque control is an effective way to recover the mechanical energy during decelerating.展开更多
Proper braking force distribution strategies can improve both stability and economy performance of hybrid electric vehicles,which is prominently proved by many studies.To achieve better dynamic stable performance and ...Proper braking force distribution strategies can improve both stability and economy performance of hybrid electric vehicles,which is prominently proved by many studies.To achieve better dynamic stable performance and higher energy recovery efficiency,an effective braking control strategy for hybrid electric buses(HEB)based on vehicle mass and road slope estimation is proposed in this paper.Firstly,the road slope and the vehicle mass are estimated by a hybrid algorithm of extended Kalman filter(EKF)and recursive least square(RLS).Secondly,the total braking torque of HEB is calculated by the sliding mode controller(SMC),which uses the information of brake intensity,whole vehicle mass,and road slope.Finally,comprehensively considering driver’s braking intention and regulations of the Economic Commission for Europe(ECE),the optimal proportional relationship between regenerative braking and pneumatic braking is obtained.Furthermore,related simulations and experiments are carried out on the hardware-in-the-loop test bench.Results show that the proposed strategy can effectively improve the braking performance and increase the recovered energy through precise control of the braking torque.展开更多
A blend braking system of heavy vehicle was proposed.The main control part of the system is the electro hydraulic proportional servo valve.A nonlinear model of brake cylinder controlled by the valve was deduced throug...A blend braking system of heavy vehicle was proposed.The main control part of the system is the electro hydraulic proportional servo valve.A nonlinear model of brake cylinder controlled by the valve was deduced through the analysis of its control property and system feature.The transfer function of the system was also proposed,and the hydraulic inherent frequency and the PID closed-loop system feature were calculated.The simulated result is consistent with those tested in the bench and on the site with 50 t heavy vehicle.The experimental result shows that the control method has quick response and high precision.展开更多
In this paper, the hybrid electric vehicle braking process is researched, by using variables consists of HEV speed, motor speed, and state of charge established, fimctions of mechanical braking force, regenerative bra...In this paper, the hybrid electric vehicle braking process is researched, by using variables consists of HEV speed, motor speed, and state of charge established, fimctions of mechanical braking force, regenerative braking force and efficiency of energy recovery are constructed, and the control goal is to maximization the energy recovery efficiency. Under the feedback control strategy, with the constrain condition of braking strength and braking stability, combining experiments in ADVISOR, in different experiments of different working conditions, we can see that in UDDS Cycle, the regenerative braking efficiency is the best. What's more, compared with strategies in ADVISOR, strategy proposed in this paper is obviously better.展开更多
Now a days,the number of vehicles especially cars are increased day by day and the people expect sophistication with safety and they wish automation for the perfection by reducing their effort and to prevent damage fr...Now a days,the number of vehicles especially cars are increased day by day and the people expect sophistication with safety and they wish automation for the perfection by reducing their effort and to prevent damage from collision of the vehicle.Parking the vehicle has always been a big task for the drivers that lead to problems such as traffic,congestion,accident,pollution etc.In order to overcome the parking problem,an automatic steering,braking and accelerating system is proposed to park a vehicle in a stipulated area and also to enhance the parking in a safety and secured way.This paper is part of our research in designing a pallet over the automated vehicle.In this paper,an automatic parking system over the existing vehicles is proposed.The vehicle to be parked will be carried by the pallet over the proposed autonomous vehicle.A detailed design of automatic car parking system has been proposed with a working model.The proposed model is equipped with sensors and the controls such as steering,acceleration and braking are achieved with the major objectives such as safety and accuracy.The proposed autonomous parking vehicle is modeled.The micro controllers in the control systems are programmed.The working model was rigorously tested with all the possibilities including collision,speed,trajectory and efficient placement on the stipulated parking slot.The system has been analyzed against various parameters and found that more durable.The performance analysis has been made on the proposed model and shaft analysis is made with Ansys.The proposed geometric modeling ensures precision with safety.展开更多
The operating principle of an antilock braking system (ABS) is it compares current value of angular acceleration with the threshold value. The advantage of such system is that enough it has only the angular velocity...The operating principle of an antilock braking system (ABS) is it compares current value of angular acceleration with the threshold value. The advantage of such system is that enough it has only the angular velocity sensors. The disadvantage is successive overshoot, i. e. successive transition from wheels locking mode to wheels rolling mode. So braking mechanism can’ t realize the maximum possible torque in the current road conditions. The idea of increasing the braking effectiveness is the intensity of rising pressure depends on the road conditions. The problem is the torque produced by braking mechanism, current road conditions and the value of traction coefficient is unknown For evaluation of these parameters built and training three neural networks. A simulator of random road condition's variation was built to test adequacy of the control unites operation in close to real conditions.展开更多
Accidents involving heavy vehicles might show high mortality rates, so it is important to study ways of reducing them. in this research, it was carried out an analysis of the regulations concerning heavy vehicle braki...Accidents involving heavy vehicles might show high mortality rates, so it is important to study ways of reducing them. in this research, it was carried out an analysis of the regulations concerning heavy vehicle braking systems in Costa Rica. And some opportunities of improving road safety regarding heavy vehicle braking systems were identified. The analysis showed several regulatory weaknesses, among which were found: lack of regulatory controls of vehicles importation, the friction coefficient associated to maximum braking distance is not specified, the use of technologies that guarantee a stable braking is not compulsory, the measuring procedure of braking efficacy in vehicle inspection shows some deficiencies, and little controls have been established on maintenance practices of heavy vehicle fleets.展开更多
This paper describes in detail three kinds of typical compound braking strategy of wheel motor drive electric vehicle and summarizes the current commonly used strategies based on the three typical strategies developed...This paper describes in detail three kinds of typical compound braking strategy of wheel motor drive electric vehicle and summarizes the current commonly used strategies based on the three typical strategies developed. In the end, a new compound braking strategy is proposed;that is, we take braking mode classify, ECE regulations and SOC value of the battery as an important reference of braking force that joins the motor braking force, as well as we join the different identification models;according to the different braking modes, the purpose is that we can apply the different braking program.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.52272387)State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University of China(Grant No.KF2020-29)Beijing Municipal Science and Technology Commission through Beijing Nova Program of China(Grant No.20230484475).
文摘This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and anti-lock braking system(ABS).First,a longitudinal-vertical coupled vehicle dynamics model is established by integrating a road input model.Then the coupling mechanisms between longitudinal and vertical vehicle dynamics are analyzed.An ASS-ABS integrated control system is proposed,utilizing an H∞controller for ASS to optimize load transfer effect and a neural network sliding mode control for ABS implementation.Finally,the effectiveness of the proposed control scheme is evaluated through comprehensive tests conducted on a hardware-in-loop(HIL)test platform.The HIL test results demonstrate that the proposed control scheme can significantly improve the braking performance and ride comfort compared to conventional ABS control methods.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(grant number IMSIU-RG23129).
文摘Vision-based vehicle detection in adverse weather conditions such as fog,haze,and mist is a challenging research area in the fields of autonomous vehicles,collision avoidance,and Internet of Things(IoT)-enabled edge/fog computing traffic surveillance and monitoring systems.Efficient and cost-effective vehicle detection at high accuracy and speed in foggy weather is essential to avoiding road traffic collisions in real-time.To evaluate vision-based vehicle detection performance in foggy weather conditions,state-of-the-art Vehicle Detection in Adverse Weather Nature(DAWN)and Foggy Driving(FD)datasets are self-annotated using the YOLO LABEL tool and customized to four vehicle detection classes:cars,buses,motorcycles,and trucks.The state-of-the-art single-stage deep learning algorithms YOLO-V5,and YOLO-V8 are considered for the task of vehicle detection.Furthermore,YOLO-V5s is enhanced by introducing attention modules Convolutional Block Attention Module(CBAM),Normalized-based Attention Module(NAM),and Simple Attention Module(SimAM)after the SPPF module as well as YOLO-V5l with BiFPN.Their vehicle detection accuracy parameters and running speed is validated on cloud(Google Colab)and edge(local)systems.The mAP50 score of YOLO-V5n is 72.60%,YOLOV5s is 75.20%,YOLO-V5m is 73.40%,and YOLO-V5l is 77.30%;and YOLO-V8n is 60.20%,YOLO-V8s is 73.50%,YOLO-V8m is 73.80%,and YOLO-V8l is 72.60%on DAWN dataset.The mAP50 score of YOLO-V5n is 43.90%,YOLO-V5s is 40.10%,YOLO-V5m is 49.70%,and YOLO-V5l is 57.30%;and YOLO-V8n is 41.60%,YOLO-V8s is 46.90%,YOLO-V8m is 42.90%,and YOLO-V8l is 44.80%on FD dataset.The vehicle detection speed of YOLOV5n is 59 Frame Per Seconds(FPS),YOLO-V5s is 47 FPS,YOLO-V5m is 38 FPS,and YOLO-V5l is 30 FPS;and YOLO-V8n is 185 FPS,YOLO-V8s is 109 FPS,YOLO-V8m is 72 FPS,and YOLO-V8l is 63 FPS on DAWN dataset.The vehicle detection speed of YOLO-V5n is 26 FPS,YOLO-V5s is 24 FPS,YOLO-V5m is 22 FPS,and YOLO-V5l is 17 FPS;and YOLO-V8n is 313 FPS,YOLO-V8s is 182 FPS,YOLO-V8m is 99 FPS,and YOLO-V8l is 60 FPS on FD dataset.YOLO-V5s,YOLO-V5s variants and YOLO-V5l_BiFPN,and YOLO-V8 algorithms are efficient and cost-effective solution for real-time vision-based vehicle detection in foggy weather.
文摘In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pumping voltage and PWM ratio is derived and a new digital control method to restrain the pumping voltage by changing PWM ratio is put forward. Because the capacitance is decreased effectively, the volume of controller is reduced and the performance to price ratio is improved. The results of computer simulation and experiment proved that this method is feasible and valid.
基金supported by the National Natural Science Foundation of China (62173303)the Fundamental Research for the Zhejiang P rovincial Universities (RF-C2020003)。
文摘The utilization of traffic information received from intelligent vehicle highway systems(IVHS) to plan velocity and split output power for multi-source vehicles is currently a research hotspot. However, it is an open issue to plan vehicle velocity and distribute output power between different supply units simultaneously due to the strongly coupling characteristic of the velocity planning and the power distribution. To address this issue, a flexible predictive power-split control strategy based on IVHS is proposed for electric vehicles(EVs) equipped with battery-supercapacitor system(BSS). Unlike hierarchical strategies to plan vehicle velocity and distribute output power separately, a monolayer model predictive control(MPC) method is employed to optimize them online at the same time. Firstly, a flexible velocity planning strategy is designed based on the signal phase and time(SPAT) information received from IVHS and then the Pontryagin’s minimum principle(PMP) is adopted to formulate the optimal control problem of the BSS. Then, the flexible velocity planning strategy and the optimal control problem of BSS are embedded into an MPC framework, which is online solved using the shooting method in a fashion of receding horizon. Simulation results verify that the proposed strategy achieves a superior performance compared with the hierarchical strategy in terms of transportation efficiency, battery capacity loss, energy consumption and computation time.
基金supported by National Development and Reform Commission of China (Grant No. 2005934)
文摘Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, the motor regenerative braking is readmitted. Aiming at avoiding permanent cycles from hydraulic anti-lock braking to motor regenerative braking, a novel electro-mechanical hybrid anti-lock braking system using fuzzy logic is designed. Different from the traditional single control structure, this system has a two-layered hierarchical structure, The first layer is responsible for harmonious adjustment or interaction between regenerative system and anti-lock braking system. The second layer is responsible for braking torque distribution and adjustment. The closed-loop simulation model is built. Control strategy and method for coordination between regenerative and anti-lock braking are developed. Simulation braking on low adhesion-coefficient roads with fuzzy logic control and real vehicle braking field test are presented. The results from simulating analysis and experiment show braking performance of the vehicle is perfect, harmonious coordination between regenerative and anti-lock braking function, significant amount of braking energy can be recovered and the proposed control strategy and method are effective.
基金supported by National Hi-tech Research and Development Program of China (863 Program,Grant No.2008AA11A126)Program for New Century Excellent Talents in University of China (Grant No. NCET-10-0498)
文摘Resolvers are normally employed for rotor positioning in motors for electric vehicles, but resolvers are expensive and vulnerable to vibrations. Hall sensors have the advantages of low cost and high reliability, but the positioning accuracy is low. Motors with Hall sensors are typically controlled by six-step commutation algorithm, which brings high torque ripple. This paper studies the high-performance driving and braking control of the in-wheel permanent magnetic synchronous motor (PMSM) based on low-resolution Hall sensors. Field oriented control (FOC) based on Hall-effect sensors is developed to reduce the torque ripple. The positioning accuracy of the Hall sensors is improved by interpolation between two consecutive Hall signals using the estimated motor speed. The position error from the misalignment of the Hall sensors is compensated by the precise calibration of Hall transition timing. The braking control algorithms based on six-step commutation and FOC are studied. Two variants of the six-step commutation braking control, namely, half-bridge commutation and full-bridge commutation, are discussed and compared, which shows that the full-bridge commutation could better explore the potential of the back electro-motive forces (EMF), thus can deliver higher efficiency and smaller current ripple. The FOC braking is analyzed with the phasor diagrams. At a given motor speed, the motor turns from the regenerative braking mode into the plug braking mode if the braking torque exceeds a certain limit, which is proportional to the motor speed. Tests in the dynamometer show that a smooth control could be realized by FOC driving control and the highest efficiency and the smallest current ripple could be achieved by FOC braking control, compared to six-step commutation braking control. Therefore, FOC braking is selected as the braking control algorithm for electric vehicles. The proposed research ensures a good motor control performance while maintaining low cost and high reliability.
基金supported by Basic Scientific Research Operation Cost of Central Universities of China (Grant No. 200903168)
文摘The hydraulic caliper disc brake system with air-over-oil is widely adopted at present for heavy vehicles,which makes use of air pressure system propelling the hydraulic pressure system acting on friction plates divided and combined for braking.There are some disadvantages such as pneumatic components failure,dust polluted and produce lots of heat in hydraulic caliper disc brake system.Moreover,considering the demands of the high speed,heavy weight,heavy load and fast brake of heavy vehicles,the full power hydraulic brake system based on double pipelines for heavy vehicles is designed and analyzed in this paper.The scheme of the full power hydraulic brake system,in which the triloculare cylinder is controlled by dual brake valve,is adopted in the brake system.The full power hydraulic brake system can accomplish steering brake,parking brake and emergent brake for heavy vehicles.Furthermore,electronic control system that is responsible for coordinating the work of hydraulic decelerator and hydraulic brake system is developed for different speed brakes.Based on the analysis of the influence of composed unit and connecting pipeline on braking performance,the nonlinear mathematic model is established for the full power hydraulic brake system.The braking completion time and braking pressure in braking performance of the double-pipeline steering brake and parking brake are discussed by means of simulation experiments based on Matlab/Simulink,and the simulation results prove that the braking performance of steering brake and parking brake meets the designing requirement of the full power hydraulic brake system.Moreover,the test-bed experiments of the brake system for heavy vehicles are carried out.The experimental data prove that the braking performance achieves the goal of the design,and that the full power hydraulic brake system based on double pipelines can effectively enhance braking performance,ensure braking reliability and security for heavy vehicles.
基金Project(JS-102)supported by the National Key Science and Technological Program of China for Electric VehiclesProject supported by Jilin University "985 Project" Engineering Bionic Technology Innovation Platform,China
文摘Regenerative braking was the process of converting the kinetic energy and potential energy, which were stored in the vehicle body when vehicle braked or went downhill, into electrical energy and storing it into battery. The problem on how to distribute braking forces of front wheel and rear wheel for electric vehicles with four-wheel drive was more complex than that for electric vehicles with front-wheel drive or rear-wheel drive. In this work, the frictional braking forces distribution curve of front wheel and rear wheel is determined by optimizing the braking force distribution curve of hydraulic proportional-adjustable valve, and then the safety brake range is obtained correspondingly. A new braking force distribution strategy based on regenerative braking strength continuity is proposed to solve the braking force distribution problem for electric vehicles with four-wheel drive. Highway fuel economy test(HWFET) driving condition is used to provide the speed signals, the braking force equations of front wheel and rear wheel are expressed with linear equations. The feasibility, effectiveness, and practicality of the new braking force distribution strategy based on regenerative braking strength continuity are verified by regenerative braking strength simulation curve and braking force distribution simulation curves of front wheel and rear wheel. The proposed strategy is simple in structure, easy to be implemented and worthy being spread.
文摘Historical roadway safety analyses have used labor and time-intensive crash data collection procedures. However, crash reporting is often delayed and crash locations are reported with varying levels of spatial accuracy and detail. Recent advances in connected vehicle (CV) data provide an opportunity for stakeholders to proactively identify areas of safety concerns in near-real time with high spatial precision. Public and private sector stakeholders including automotive original equipment manufacturers (OEM) and insurance providers may independently define acceleration thresholds for reporting unsafe driver behavior. Although some OEMs have provided fixed threshold hard-braking event data for a number of years, this varies by OEM and there is no published literature on the best thresholds to use for identifying emerging safety issues. This research proposes a methodology to estimate deceleration events from raw CV trajectory data at varying thresholds that can be scaled to any CV. The estimated deceleration events and crash incident records around 629 interstate exits in Indiana were analyzed for a three-month period from March 1-May 31, 2023. Nearly 20 million estimated deceleration events and 4800 crash records were spatially joined to a 2-mile search radius around each exit ramp. Results showed that deceleration events between -0.5 g and -0.4 g had the highest correlation with an R<sup>2</sup> of 0.69. This study also identifies the top 20 interstate exit locations with highest deceleration events. The framework presented in this study enables agencies and transportation professionals to perform safety evaluations on raw trajectory data without the need to integrate external data sources.
基金863 National Project EQ7200HEV hybridelectric vehicle (2001AA501200,2003AA501200)
文摘Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is added by electric motor, the braking torque distribution between front and rear axles should be changed and the control logic of anti-lock braking system (ABS) ought to be adjusted according to the regenerative braking torque. This paper put forward a braking control strategy for hybrid electric vehicle; the control strategy is implemented with eight DOFs (Degree-of-Freedom) nonlinear vehicle forward simulation model which is built under the environment of Matlab/Simulink. Based on target wheel slip ratio, a fuzzy logic approach was applied to maintain the optimal target slip ratio so that best compromise between hydraulic torque and regenerative torque can be obtained for the vehicle.
基金Supported by Jiangsu Provincial Key R&D Program(Grant No.BE2019004)National Natural Science Funds for Distinguished Young Scholar of China(Grant No.52025121)+1 种基金National Nature Science Foundation of China(Grant Nos.51805081,51975118,52002066)Jiangsu Provincial Achievement Transformation Project(Grant No.BA2018023).
文摘Most researches focus on the regenerative braking system design in vehicle components control and braking torque distribution,few combine the connected vehicle technologies into braking velocity planning.If the braking intention is accessed by the vehicle-to-everything communication,the electric vehicles(EVs)could plan the braking velocity for recovering more vehicle kinetic energy.Therefore,this paper presents an energy-optimal braking strategy(EOBS)to improve the energy efficiency of EVs with the consideration of shared braking intention.First,a double-layer control scheme is formulated.In the upper-layer,an energy-optimal braking problem with accessed braking intention is formulated and solved by the distance-based dynamic programming algorithm,which could derive the energy-optimal braking trajectory.In the lower-layer,the nonlinear time-varying vehicle longitudinal dynamics is transformed to the linear time-varying system,then an efficient model predictive controller is designed and solved by quadratic programming algorithm to track the original energy-optimal braking trajectory while ensuring braking comfort and safety.Several simulations are conducted by jointing MATLAB and CarSim,the results demonstrated the proposed EOBS achieves prominent regeneration energy improvement than the regular constant deceleration braking strategy.Finally,the energy-optimal braking mechanism of EVs is investigated based on the analysis of braking deceleration,battery charging power,and motor efficiency,which could be a guide to real-time control.
基金The National Natural Science Foundation of China(No.51378121,51778139)
文摘To investigate the influence of wet conditions on vehicle braking behavior,a numerical-analytical method was proposed for the simulation of tire hydroplaning and frictional energy dissipation. First, a finite element model of tire hydroplaning was established using the coupled EulerianLagrangian method,including a pneumatic tire model and a textured asphalt pavement model. Then,the frictional force on the tire-pavement interface at different speeds was calculated by the model. Based on vehicle braking mechanism and frictional energy dissipation,a calculation method for braking distance was proposed based on a three-stage braking process. The proposed method was verified by comparing the calculated hydroplaning speed and braking distance with field test results.Then,vehicle braking distances and wet friction coefficients were calculated under different conditions. The results show that thinner water film,a more complex tread pattern and higher tire inflation pressure all contribute to the vehicle braking performance; moreover, the pavement texture has obvious influence on vehicle braking behavior,especially at a high speed. The proposed method shows great effectiveness in predicting vehicle braking behavior on wet asphalt pavements.
基金Supported by the National High Technology Research and Development Program of China(2011AA11A252)
文摘The operating mode of a single shaft hybrid electric vehicle (SSHEV) in which the electric motor exerts negative torque on the shaft to imitate engine braking is analyzed. The method of determining the quantity of regenerative braking torque is proposed with the premise that the braking intensity required by the driver is satisfied. On this basis, factors that affect torque generated by the motor are listed, and how the battery' s temperature and state of charge ( SOC ) restrict and correct the braking torque is expounded. Finally, road test results show that the motor' s constant power or constant torque control is an effective way to recover the mechanical energy during decelerating.
基金Electric Automobile and Intelligent Connected Automobile Industry Innovation Project of Anhui Province of China(Grant No.JAC2019022505)Key Research and Development Projects in Shandong Province of China(Grant No.2019TSLH701).
文摘Proper braking force distribution strategies can improve both stability and economy performance of hybrid electric vehicles,which is prominently proved by many studies.To achieve better dynamic stable performance and higher energy recovery efficiency,an effective braking control strategy for hybrid electric buses(HEB)based on vehicle mass and road slope estimation is proposed in this paper.Firstly,the road slope and the vehicle mass are estimated by a hybrid algorithm of extended Kalman filter(EKF)and recursive least square(RLS).Secondly,the total braking torque of HEB is calculated by the sliding mode controller(SMC),which uses the information of brake intensity,whole vehicle mass,and road slope.Finally,comprehensively considering driver’s braking intention and regulations of the Economic Commission for Europe(ECE),the optimal proportional relationship between regenerative braking and pneumatic braking is obtained.Furthermore,related simulations and experiments are carried out on the hardware-in-the-loop test bench.Results show that the proposed strategy can effectively improve the braking performance and increase the recovered energy through precise control of the braking torque.
文摘A blend braking system of heavy vehicle was proposed.The main control part of the system is the electro hydraulic proportional servo valve.A nonlinear model of brake cylinder controlled by the valve was deduced through the analysis of its control property and system feature.The transfer function of the system was also proposed,and the hydraulic inherent frequency and the PID closed-loop system feature were calculated.The simulated result is consistent with those tested in the bench and on the site with 50 t heavy vehicle.The experimental result shows that the control method has quick response and high precision.
基金Supported by National Natural Science Foundation of China(No.61370088)International Scientific and Technological Cooperation Projects of China(No.2012DFB10060)Topic of the Ministry of Education about Humanities and Social Sciences of China(No.12JDGC007)
文摘In this paper, the hybrid electric vehicle braking process is researched, by using variables consists of HEV speed, motor speed, and state of charge established, fimctions of mechanical braking force, regenerative braking force and efficiency of energy recovery are constructed, and the control goal is to maximization the energy recovery efficiency. Under the feedback control strategy, with the constrain condition of braking strength and braking stability, combining experiments in ADVISOR, in different experiments of different working conditions, we can see that in UDDS Cycle, the regenerative braking efficiency is the best. What's more, compared with strategies in ADVISOR, strategy proposed in this paper is obviously better.
文摘Now a days,the number of vehicles especially cars are increased day by day and the people expect sophistication with safety and they wish automation for the perfection by reducing their effort and to prevent damage from collision of the vehicle.Parking the vehicle has always been a big task for the drivers that lead to problems such as traffic,congestion,accident,pollution etc.In order to overcome the parking problem,an automatic steering,braking and accelerating system is proposed to park a vehicle in a stipulated area and also to enhance the parking in a safety and secured way.This paper is part of our research in designing a pallet over the automated vehicle.In this paper,an automatic parking system over the existing vehicles is proposed.The vehicle to be parked will be carried by the pallet over the proposed autonomous vehicle.A detailed design of automatic car parking system has been proposed with a working model.The proposed model is equipped with sensors and the controls such as steering,acceleration and braking are achieved with the major objectives such as safety and accuracy.The proposed autonomous parking vehicle is modeled.The micro controllers in the control systems are programmed.The working model was rigorously tested with all the possibilities including collision,speed,trajectory and efficient placement on the stipulated parking slot.The system has been analyzed against various parameters and found that more durable.The performance analysis has been made on the proposed model and shaft analysis is made with Ansys.The proposed geometric modeling ensures precision with safety.
文摘The operating principle of an antilock braking system (ABS) is it compares current value of angular acceleration with the threshold value. The advantage of such system is that enough it has only the angular velocity sensors. The disadvantage is successive overshoot, i. e. successive transition from wheels locking mode to wheels rolling mode. So braking mechanism can’ t realize the maximum possible torque in the current road conditions. The idea of increasing the braking effectiveness is the intensity of rising pressure depends on the road conditions. The problem is the torque produced by braking mechanism, current road conditions and the value of traction coefficient is unknown For evaluation of these parameters built and training three neural networks. A simulator of random road condition's variation was built to test adequacy of the control unites operation in close to real conditions.
文摘Accidents involving heavy vehicles might show high mortality rates, so it is important to study ways of reducing them. in this research, it was carried out an analysis of the regulations concerning heavy vehicle braking systems in Costa Rica. And some opportunities of improving road safety regarding heavy vehicle braking systems were identified. The analysis showed several regulatory weaknesses, among which were found: lack of regulatory controls of vehicles importation, the friction coefficient associated to maximum braking distance is not specified, the use of technologies that guarantee a stable braking is not compulsory, the measuring procedure of braking efficacy in vehicle inspection shows some deficiencies, and little controls have been established on maintenance practices of heavy vehicle fleets.
文摘This paper describes in detail three kinds of typical compound braking strategy of wheel motor drive electric vehicle and summarizes the current commonly used strategies based on the three typical strategies developed. In the end, a new compound braking strategy is proposed;that is, we take braking mode classify, ECE regulations and SOC value of the battery as an important reference of braking force that joins the motor braking force, as well as we join the different identification models;according to the different braking modes, the purpose is that we can apply the different braking program.